Name:

Enrolment No:

UNIVERSITY WITH A PURPOSE

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES

End Semester Examination, December 2019

SECTION A

Course: Mathematics I **Program: B. Tech. (All SOE)** Course Code: MATH 1026

Semester: I Time 03 hrs. Max. Marks: 100

Instructions:

	SECTION A			
(All Questions are compulsory)				
S. No.		Mark s	CO	
Q 1	If x, y and z are linearly independent vectors then show that $(x + y)$, $(y + z)$ and $(z + x)$ are linearly independent vectors.	4	CO1	
Q 2	Determine whether $u = (x^2 + xz - xy)$, $v = (x + y - z)$ and $w = (x - y + z)$ are functionally independent or not.	4	CO2	
Q 3	If <i>a</i> is a constant vector and $r = x \mathbf{i} + y \mathbf{j} + z \mathbf{k}$ then verify that <i>curl</i> $(a \times r) = 2 a$.	4	CO3	
Q 4	Evaluate $\iint_{R} \sqrt{x^2 + y^2} dx dy$ by changing to polar coordinates where <i>R</i> is the region in <i>x</i> - <i>y</i> plane bounded by the circles $x^2 + y^2 = 4$ and $x^2 + y^2 = 9$.	4	CO2	
Q 5	Find the approximate value of $tan 46^{\circ}$ using Taylor's series (using first four terms of the expansion).	4	CO4	
	SECTION B	•		
	(All Questions are compulsory, Q 9 has internal choices)			
Q 6	Evaluate $\oint 2y^3 dx + x^3 dy + z dz$ where <i>C</i> is the trace of the cone $z = \sqrt{x^2 + y^2}$ intersected by plane $z = 4$ and <i>S</i> is the surface of the cone below $z = 4$.	10	CO3	
Q 7	Find the Fourier series expansion of the periodic function $f(x) = x$, $-\pi \le x \le \pi$, $f(x + 2\pi) = f(x)$.	10	CO4	
Q 8	Find the Fourier cosine series of the function $f(x) = \begin{cases} x^2, & 0 \le x \le 2\\ 4, & 2 \le x \le 4 \end{cases}$	10	CO4	
Q 9	Use the divergence theorem to evaluate $\iint_{S} (v \bullet n) dA$, where $v = x^{2}z i + yj - xz^{2}k$ and <i>S</i> is the boundary of the region bounded by the paraboloid $z = x^{2} + y^{2}$ and the plane $z = 4y$. OR	10	CO3	

	Show that $\oint_C \frac{\partial u}{\partial n} ds = \iint_R \nabla^2 u dx dy$ where ∇^2 is the Laplace operator $\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}$ and <i>n</i> is the				
	unit outward normal to C.				
	SECTION-C				
	(All Questions are compulsory, Q 11 A and Q 11 B have internal choices)				
Q 10 A	If $A = \begin{bmatrix} 0 & 0 & 1 \\ 1 & 0 & -1 \\ 0 & 1 & 1 \end{bmatrix}$ always satisfies the matrix equation $A^3 - A^2 + A = kI$, then find the value of constant k. Hence find A^5 .	10	C01		
Q 10 B	A solid fills the region between two concentric spheres of radii 4 cm and 6 cm. with constant density <i>k</i> , Find the total mass of the solid.	10	CO2		
Q11A	Evaluate $\oint_C f(x, y)dx + g(x, y)dy$ where $f(x, y) = e^{-x} \sin y$, $g(x, y) = e^{-x} \cos y$ and C is the square with vertices at $(0, 0)$, $(\pi/2, 0)$, $(\pi/2, \pi/2)$ and $(0, \pi/2)$. OR If $A = 2xz\hat{i} - x\hat{j} + y^2\hat{k}$, evaluate $\iiint_V A dv$ where V is the region bounded by the surface $x = 0$, $y = 0$, $x = 3$, $y = 4$, $z = x^2$, $z = 4$.	10	CO3		
Q 11 B	Find the Fourier series expansion of $f(x) = \begin{cases} 2+x & -2 \le x \le 0\\ 2-x & 2 < x \le 4 \end{cases} \text{ and } f(x+4) = f(x)$ OR Show that $a^x = 1 + x \log a + \frac{(x \log a)^2}{2!} + \frac{(x \log a)^3}{3!} + \dots$ where $-\infty < x < \infty$.	10	CO4		