

	Show that $\oint_{C} \frac{\partial u}{\partial n} d s=\iint_{R} \nabla^{2} u d x d y$ where ∇^{2} is the Laplace operator $\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}$ and n is the unit outward normal to C.		
SECTION-C(All Questions are compulsory, Q 11 A and Q 11 B have internal choices)			
$\begin{aligned} & \text { Q } 10 \\ & \text { A } \end{aligned}$	If $A=\left[\begin{array}{ccc}0 & 0 & 1 \\ 1 & 0 & -1 \\ 0 & 1 & 1\end{array}\right]$ always satisfies the matrix equation $A^{3}-A^{2}+A=k I$, then find the value of constant k. Hence find A^{5}.	10	$\mathrm{CO1}$
$\begin{aligned} & \text { Q } 10 \\ & \text { B } \end{aligned}$	A solid fills the region between two concentric spheres of radii 4 cm and 6 cm . with constant density k, Find the total mass of the solid.	10	CO 2
Q11A	Evaluate $\oint_{c} f(x, y) d x+g(x, y) d y$ where $f(x, y)=e^{-x} \sin y, g(x, y)=e^{-x} \cos y$ and C is the square with vertices at $(0,0),(\pi / 2,0),(\pi / 2, \pi / 2)$ and $(0, \pi / 2)$. OR If $A=2 x z \hat{\imath}-x \hat{\jmath}+y^{2} \hat{k}$, evaluate $\iiint_{V} A d v$ where V is the region bounded by the surface $x=0, y=0, x=3, y=4, z=x^{2}, z=4$.	10	CO 3
$\begin{aligned} & \text { Q } 11 \\ & \text { B } \end{aligned}$	Find the Fourier series expansion of $f(x)=\left\{\begin{array}{ll} 2+x & -2 \leq x \leq 0 \\ 2-x & 2<x \leq 4 \end{array} \text { and } f(x+4)=f(x)\right.$ OR Show that $a^{x}=1+x \log a+\frac{(x \log a)^{2}}{2!}+\frac{(x \log a)^{3}}{3!}+\ldots . . \quad$ where $-\infty<x<\infty$.	10	$\mathrm{CO4}$

