

SECTION B			
Q 5	Today Vivek marked the attendance of students with respect to time which gradually increased as the lecture progressed (positively correlated). He found the following observations: Vivek happened to a number freak and wants to find an equation for the observed data. He loves the second degree parabolic equation: $\mathrm{Y}=\mathrm{a}+\mathrm{bX}+\mathrm{cX}^{2}$ Help Vivek to formulate the equation.	10	CO 2
Q 6	Suppose X and Y are the two variables having the correlation coefficient 0.85 . The following are the values they have: If two new variables A and B are obtained by adding 50 to each value of X and 100 to each value of Y respectively, calculate the correlation coefficient between A and B using the above data. Also compare the results.	10	CO4
Q 7	The diameter of an electric cable say X , is assumed to be a continuous random variable with p.d.f. $F(x)=6 x(1-x) ; 0<=x<=1 .$ 1) Check that $f(x)$ is a p.d.f. 2) Determine $P(X<=0.5)$ and $P(X>0.2)$	10	CO4
Q 8	In a statistical study relating to the prices (in Rs.) of two shares, X and Y , the following two regression lines were found as $\begin{aligned} & 8 \mathrm{X}-10 \mathrm{Y}+70=0 \\ & 20 \mathrm{X}-9 \mathrm{Y}-65=0 \end{aligned}$ The standard deviation of $\mathrm{X}=3$. Compute i) The values of mean of X and mean of Y , ii) $\quad \mathrm{R}(\mathrm{X}, \mathrm{Y})$ iii) Standard deviation of Y .	10	CO4

	OR There are eight coins, seven of which have the same weight and the other one weighs more. In order to find the coin having more weight, a person randomly chooses two coins and puts one coin on each side of a common balance. If these two coins are found to have the same weight, the person then randomly chooses two more coins from the rest and follows the same method as before. The probability that the coin will be identified at the second draw is?		
SECTION-C			
Q 9	a) Metro trains are scheduled every 3 minutes at a certain station. A person comes to the station at a random time and waits for the train. If waiting time follows uniform distribution over the interval $(0,3)$, then find the probability that he has to wait at least 2 minutes for the train. b) Suppose that on an average 1 customer per minute arrives at a shop. What is the probability that the shopkeeper will wait more than 3 minutes before the first two customers arrive? Assume that waiting time follows gamma distribution.	20	CO 3
Q 10	The variance of a certain dimension article produced by a machine is 7.2 over a long period. A random sample of 20 articles gave a variance 8 . Is it justifiable to conclude that variability has increased at 5% level of significance assuming that the measurement of dimension article is normally distributed? For reference:	20	CO5

