

|  | $\begin{array}{\|c} 8 \\ \hline 7 \end{array}$ | a <br> d <br> 6 | 2 <br> $\mathbf{b}$ <br> $\mathbf{c}$ <br> 5 | 3 <br> TOP $\rightarrow$ <br> 4 <br> . 1 | $\vdots$ <br>  <br> 8 <br> d <br> b <br> 1 <br> $\boldsymbol{S}$ |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Q 9 | Determine a composite $\mathbf{N}=\mathbf{I}+\mathbf{J}+\mathbf{K}$ |  |  | trix to align a vect | or $V=3 \mathbf{I}-2 \mathbf{J}+\mathbf{K}$ with | 10 | $\mathrm{CO3}$ |
|  |  |  |  | R |  |  |  |
|  | Define affine transform $\mathrm{A}(0,0), \mathrm{B}(1,1), \mathrm{C}(5,$ |  | exa cen | $\text { e. Perform a } 45 \text { de }$ | gree rotation of a triangle | 3+7 | CO3 |
| SECTION-C |  |  |  |  |  |  |  |
| Q 10 | (a) Determine the transformation matrix to map a 2 D object defined in world coordinates ( $w x, w y$ ) to its corresponding device coordinates ( $v x, v y$ ). Find the normalization transformation that maps a window whose lower left corner is at $(1,1)$ and upper right corner is at $(3,5)$ onto a viewport that has lower left corner at $(-1,-1)$ and upper right corner at $(1,1)$. <br> (b) Execute the z-buffer algorithm to illuminate the pixels on an $8 \times 8$ display. The surfaces to be probed for visibility are: <br> A: $(1,4,3),(3,4,3),(3,6,3),(1,6,3)$. <br> B: $(2,3,2),(4,3,2),(4,5,2),(2,5,2)$. <br> C: $(4,1,1),(7,1,1),(4,4,1)$. <br> Assume the intensities of the surfaces A, B, and C as 10,20 , and 30 , respectively. Show the content of depth and frame buffer upon each surface processing. <br> (c) Discuss the way z-buffer algorithm computes the depth at each pixel. |  |  |  |  | $4+4$ <br> 8 | $\begin{gathered} \text { CO3, } \\ \text { CO5, } \\ \text { CO5 } \end{gathered}$ |
| Q 11 | (a) Explain Cohen-Sutherland line clipping algorithm by giving suitable example. <br> (b) Differentiate between geometric and coordinate transformations. <br> (c) Is flat shading the most efficient amongst the available shading schemes? Justify your answer. |  |  |  |  | 10 6 | $\begin{aligned} & \mathrm{CO2}, \\ & \mathrm{CO}, \\ & \mathrm{CO} \end{aligned}$ |
|  | OR |  |  |  |  |  |  |


| (a) Explain the working of scan-line filling algorithm by discussing its execution on <br> the polyline region given in Fig. 2. | $\mathbf{1 0}$ | CO2, |
| :--- | :--- | :--- | :---: |
| (b) Brief the significance of homogeneous coordinates in graphics transformations. | 5 | $\mathbf{C O 3 ,}$ |
| (c) Discuss a technique to determine the back faces of a polyhedron. | 5 | $\mathbf{C O 5}$ |

