Name:

Enrolment No:

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES

End Semester Examination, December 2019

Course: Formal Language and Automata (CSEG3004)

Semester: V

Programme: B.Tech (CS+ All IBM courses)

Time: 03 hrs. Max. M		Iarks: 100	
SECTION A			
S. No.		Marks	CO
Q 1	Check if the two finite automata given in the following figures are equivalent. Give reason to support your answer.	4	CO1
Q 2	Differentiate between FA/PDA vs. TM with respect to: a) Tape and head b) Halt state and final state	4	CO4
Q 3	Discuss P, NP and NPC class problem.	4	CO4
Q 4	How many different DFA can be designed with fixed initial states over $\sum =\{a,b\}$ and number of states are 2.	4	CO1
Q 5	Design a Moore machine for recognizing all even integers between 100 and 1000.	4	CO2
	SECTION B		
Q 6	Construct a Turing machine that finds the product of two natural numbers.	10	CO4
Q 7	Convert the following grammar into CNF: $A \rightarrow BAB \mid B \mid \epsilon$ $B \rightarrow 00 \mid \epsilon$	10	CO3
Q 8	Find the regular expression corresponding to the following automata:	10	CO2
Q 9	Convert the NFA- ε, given in the following figure, to DFA.	10	CO1

