Name: Enrolment No:			
UNIVERSITY OF PETROLEUM AND ENERGY STUDIES End Semester Examination, December 2019			
Course: Formal Language and Automata (CSEG3004) Semester: V Programme: B.Tech (CS+ All IBM courses) Time: 03 hrs. Max. Marks: 100			
SECTION A			
S. No.		Marks	CO
Q 1	Check if the two finite automata given in the following figures are equivalent. Give reason to support your answer.	4	CO1
Q 2	Differentiate between FA/PDA vs. TM with respect to: a) Tape and head b) Halt state and final state	4	CO4
Q 3	Discuss P, NP and NPC class problem.	4	CO4
Q 4	How many different DFA can be designed with fixed initial states over $\sum=\{\mathrm{a}, \mathrm{b}\}$ and number of states are 2.	4	CO1
Q 5	Design a Moore machine for recognizing all even integers between 100 and 1000.	4	CO2
SECTION B			
Q 6	Construct a Turing machine that finds the product of two natural numbers.	10	CO4
Q 7	Convert the following grammar into CNF: $\begin{aligned} & \mathrm{A} \rightarrow \mathrm{BAB}\|\mathrm{~B}\| \varepsilon \\ & \mathrm{B} \rightarrow 00 \mid \varepsilon \end{aligned}$	10	CO3
Q 8	Find the regular expression corresponding to the following automata:	10	CO2
Q 9	Convert the NFA- ε,given in the following figure, to DFA.	10	CO1

	OR Construct a minimum state automata for the following DFA-		
SECTION-C			
Q 10	For the following regular expression, draw a ε-NFA and convert into the equivalent DFA. a) $(a+b)^{*}(a b b+a b a b a b)(a+b)^{*}$ b) $\left.(\varepsilon+0+1+00+01+11+10)((0+1) 0+1)^{*}\right)$	20	CO 2
Q 11	Write transition rules for a PDA corresponding to the following Context Free Language: $\mathrm{L}=\left\{\mathrm{wcw}^{\mathrm{R}} \mid \mathrm{w}\right.$ is in $(0+1)^{*}$ and w^{R} represents reverse w$\}$. Also, obtain Context Free grammar for this PDA. OR Write the CFG for the following language: i) $\quad L=\left\{a^{x} b^{y} \mid x \neq y\right\}$ ii) $\quad \mathrm{L}=\left\{\mathrm{a}^{\mathrm{n}} \mathrm{b}^{\mathrm{m}} \mathrm{c}^{\mathrm{m}} \mathrm{a}^{\mathrm{n}} \mid \mathrm{n}, \mathrm{m}>=1\right\}$ iii) $\quad \mathrm{L}=\left\{\left(\mathrm{a}^{\mathrm{n}} \mathrm{b}^{\mathrm{n}} \mathrm{c}^{\mathrm{m}} \mathrm{d}^{\mathrm{m}} \mid \mathrm{n}>=1, \mathrm{~m}>=1\right) \mathrm{U}\left(\mathrm{a}^{\mathrm{n}} \mathrm{b}^{\mathrm{m}} \mathrm{c}^{\mathrm{m}} \mathrm{d}^{\mathrm{n}} \mid \mathrm{n}>=1, \mathrm{~m}>=1\right)\right\}$ iv) $\quad \mathrm{L}=\left\{0^{\mathrm{i}} 1^{\mathrm{j}} 2^{\mathrm{k}} \mid \mathrm{k}<=\mathrm{i}\right.$ or $\left.\mathrm{k}<=\mathrm{j}\right\}$	20	CO 3

