Name:

Enrolment No:

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES End Semester Examination, December 2019

Course: Design and Analysis of Algorithm Program: B.Tech Computer Science + LLB CL/ET-IPR Course Code: CSEG 2003

Semester: III Time: 03 hrs. Max. Marks: 100

Instructions: Attempt each question with suitable diagrammatic representation of concepts. SECTION A

S. No.		Marks	CO
Q 1	What are the characteristics of an algorithm? Discuss the various stages of algorithm design and analysis process using flow chart.	4	CO1
Q 2	What is an asymptotic notation? Give the different notations used to represent the complexity of algorithms?	4	CO1
Q 3	Sort the list of the elements 10,5,7,6,1,4,8,3,2,9 using merge sort algorithm and show its computing time is O(n log n)	4	CO1
Q 4	Define Divide & Conquer Strategy. Describe the time complexity of Divide And Conquer in the recurrence form.	4	CO2
Q 5	Differentiate between Greedy method and dynamic programming.	4	CO3
	SECTION B		
Q 6	Solve the given list 10 80 30 90 40 50 70 using quick sort algorithm. Also analyse its complexity.	10	CO2
Q 7	What do you mean by recurrence relation? What are the three methods to solve the recurrence relation? Solve $T(n)=2T(n/2)+c$ using recurrence tree.	10	CO2
Q 8	Describe the Travelling sales person problem and discuss how to solve it using dynamic programming.	10	CO3

Q 9	Sort the list 15, 1, 321, 10, 802, 2, 123, 90, 109, 11 using Bucket sort. Also show its time complexity. OR										
									10	CO4	
	Explain how backtracking is used for solving n- queens problem. Show the state space tree.										
					SECTIO	DN-C					
Q 10	Solve the following Knapsack problem with given capacity W: 5 using greedy strategy.										
	Item	1	2	3	4	5	6	7		20	CO2
	Profit	₹10	₹5	₹15	₹7	₹6	₹18	₹3		20	
	Weight	2	3	5	7	1	4	1			
	(a) Apply Dijkastra's Algorithm on the above graph and find shortest path from node A to rest of the nodes.(Explain step by step). (b) Find minimum spanning tree for the same garph using Prim's Algorithm OR Apply Bellman-Ford algorithm on following graph.									20	CO4