Name:	UPES
Enrolment No:	UNIVERSITY WITH A PURPOSE

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES
 End Semester Examination, December 2019
 Semester: III
 Time: 03 hrs.
 Max. Marks: 100

Course: Design and Analysis of Algorithm
Program: B.Tech Computer Science + LLB CL/ET-IPR
Course Code: CSEG 2003
Instructions: Attempt each question with suitable diagrammatic representation of concepts.

SECTION A			
S. No.		Marks	CO
Q 1	What are the characteristics of an algorithm? Discuss the various stages of algorithm design and analysis process using flow chart.	4	CO1
Q 2	What is an asymptotic notation? Give the different notations used to represent the complexity of algorithms?	4	CO1
Q 3	Sort the list of the elements $10,5,7,6,1,4,8,3,2,9$ using merge sort algorithm and show its computing time is $\mathrm{O}(\mathrm{n} \log \mathrm{n})$	4	CO1
Q 4	Define Divide \& Conquer Strategy. Describe the time complexity of Divide And Conquer in the recurrence form.	4	CO2
Q 5	Differentiate between Greedy method and dynamic programming.	4	CO 3
SECTION B			
Q 6	Solve the given list 10803090405070 using quick sort algorithm. Also analyse its complexity.	10	CO2
Q 7	What do you mean by recurrence relation? What are the three methods to solve the recurrence relation? Solve $T(n)=2 T(n / 2)+c$ using recurrence tree.	10	CO2
Q 8	Describe the Travelling sales person problem and discuss how to solve it using dynamic programming.	10	CO3

Q9	Sort the list $15,1,321,10,802,2,123,90,109,11$ using Bucket sort. Also show its time complexity. OR Explain how backtracking is used for solving n - queens problem. Show the state space tree.	10	CO 4
	SECTION-C		
Q 10	Solve the following Knapsack problem with given capacity W: 5 using greedy strategy.	20	CO 2
Q 11	(a) Apply Dijkastra's Algorithm on the above graph and find shortest path from node A to rest of the nodes.(Explain step by step). (b) Find minimum spanning tree for the same garph using Prim's Algorithm OR Apply Bellman-Ford algorithm on following graph.	20	CO4

