Name: Enrolment No:			
Course: Discrete Mathematical Structures Semester: III (2019-2020) Course Code: CSEG 2006 Time: 03 hrs. Programme: B.Tech (All SoCS Branches) Max. Marks: 100 Instructions: Attempt all questions from Section A (each carrying 4 marks); all questions from Section B (each carrying 10 marks) and all questions from Section C (carrying 20 marks).			
SECTION A			
S. No.		Marks	CO
Q1	Check whether the set of all integers \mathbb{Z} is a countable infinite set or not. Give the explanation.	4	CO1
Q2	Check whether the set of vectors $\{(1,2,3),(1,-1,-1),(3,2,1),(2,1,-1)\}$ is basis or not of \mathbb{R}^{3}.	4	CO2
Q3	G is a non-directed simple graph with 12 edges. If G has 6 vertices each of 3 degrees and the rest have the degree less than 3 , determine the minimum number of vertices G can have.	4	$\mathrm{CO3}$
Q4	A tree has two vertices of degree 2 , one vertex of degree 3 and three vertices of degree 4 . How many vertices of degree 1 does it have?	4	CO4
Q5	Check whether the transformation $T: \mathbb{R}^{3}(\mathbb{R}) \rightarrow \mathbb{R}^{3}(\mathbb{R})$ defined as $T(x, y, z)=(x, y, k z), k \in \mathbb{R}$ is a linear transformation or not.	4	CO2
SECTION B			
Q6	Using the decomposition theorem, determine the chromatic polynomial and hence the chromatic number of the graph as shown below.	10	CO3
Q7	Using Dijkstra's algorithm, determine the length of the shortest path between the vertices \mathbf{e} to \mathbf{f} and hence the shortest path in the following graph.	10	CO3

Q8	Give an example of each graph which is (i) Cycle (C_{5}) (ii) Eulerian (iii) Hamiltonian, (iv) Eulerian but non-Hamiltonian and (v) Hamiltonian but non- Eulerian.	10	CO 3
Q9	Determine the solution of the following non-homogeneous recurrence relation $y_{n}+4 y_{n-1}+4 y_{n-2}=n^{2}-3 n+5$, with $y_{0}=0, y_{1}=1$.	10	CO1
	OR		
Q9	Using the generating function method, determine the solution of the recurrence relation $y_{n+2}-2 y_{n+1}+y_{n}=2^{n}$ with the conditions $y_{0}=2$ and $y_{1}=1$.	10	CO1
SECTION-C			
Q10(A)	Show that the set (V) of all $m \times n$ matrices with elements as real numbers is a vector space over the field $(\mathbb{R},+, \bullet)$ with "addition of matrices" is the internal composition and "multiplication of a matrix by a scalar" is the external composition in V.	10	CO2
Q10(B)	Determine the maximum flow for the network as shown below using Ford-Fulkerson algorithm. Determine the cut with capacity equal to this maximum flow.	10	CO4
Q11(A)	Define graph vertex colouring. Explain Welch-Powell algorithm and using this algorithm determine the coloring of the graph as shown below and hence find the chromatic number $\chi(G)$.	10	CO 3
	OR		

Q11(A)	Define isomorphism between two graphs. Determine whether the given pair of graphs is isomorphic or not. Give the explanation. (G) (H)	10	CO 3
Q11(B)	Using Prim's algorithm, determine a minimal spanning tree from the weighted graph as given below	10	CO4
	OR		
Q11(B)	Using Kruskal's algorithm, determine a minimal spanning tree of the weighted graph given below.	10	CO4

