Name:

Enrolment No:

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES **End Semester Examination, December 2019**

Course: Discrete Mathematical Structures

Course Code: CSEG 2006

Programme: B.Tech (All SoCS Branches)

Max. Marks: 100

Instructions: Attempt all questions from Section A (each carrying 4 marks); all questions from Section B (each carrying 10 marks) and all questions from Section C (carrying 20 marks). **SECTION A**

S. No.		Marks	CO
Q1	Check whether the set of all integers \mathbb{Z} is a countable infinite set or not. Give the explanation.	4	CO1
Q2	Check whether the set of vectors $\{(1,2,3), (1,-1,-1), (3,2,1), (2,1,-1)\}$ is basis or not of \mathbb{R}^3 .	4	CO2
Q3	G is a non-directed simple graph with 12 edges. If G has 6 vertices each of 3 degrees and the rest have the degree less than 3, determine the minimum number of vertices G can have.	4	CO3
Q4	A tree has two vertices of degree 2, one vertex of degree 3 and three vertices of degree 4. How many vertices of degree 1 does it have?	4	CO4
Q5	Check whether the transformation $T : \mathbb{R}^3(\mathbb{R}) \to \mathbb{R}^3(\mathbb{R})$ defined as $T(x, y, z) = (x, y, kz), k \in \mathbb{R}$ is a linear transformation or not.	4	CO2
	SECTION B		
Q6	Using the decomposition theorem, determine the chromatic polynomial and hence the chromatic number of the graph as shown below. $\begin{array}{c} & & \\ & $	10	CO3
Q7	Using Dijkstra's algorithm, determine the length of the shortest path between the vertices e to f and hence the shortest path in the following graph. $ \begin{array}{c} $	10	CO3

Semester: III (2019-2020) Time: 03 hrs.

Q8	Give an example of each graph which is (i) Cycle (C_5) (ii) Eulerian (iii) Hamiltonian, (iv) Eulerian but non-Hamiltonian and (v) Hamiltonian but non- Eulerian.	10	CO3
Q9	Determine the solution of the following non-homogeneous recurrence relation $y_n + 4y_{n-1} + 4y_{n-2} = n^2 - 3n + 5$, with $y_0 = 0$, $y_1 = 1$.	10	CO1
	OR		
Q9	Using the generating function method, determine the solution of the recurrence relation $y_{n+2} - 2 y_{n+1} + y_n = 2^n$ with the conditions $y_0 = 2$ and $y_1 = 1$.	10	CO1
	SECTION-C		
Q10(A)	Show that the set (<i>V</i>) of all $m \times n$ matrices with elements as real numbers is a vector space over the field $(\mathbb{R}, +, \bullet)$ with "addition of matrices" is the internal composition and "multiplication of a matrix by a scalar" is the external composition in <i>V</i> .	10	CO2
Q10(B)	Determine the maximum flow for the network as shown below using Ford-Fulkerson algorithm. Determine the cut with capacity equal to this maximum flow.	10	CO4
Q11(A)	Define graph vertex colouring. Explain Welch-Powell algorithm and using this algorithm determine the coloring of the graph as shown below and hence find the chromatic number $\chi(G)$.	10	CO3
	OR		

