Name: Enrolment No:			
UNIVERSITY OF PETROLEUM AND ENERGY STUDIES End Semester Examination, December 2019 Course: FORMAL LANGUAGES AND AUTOMATA THEORY			
SECTION A			
S. No.		Marks	CO
Q 1	Construct RE where, $\mathrm{L}=\left\{\mathrm{a}^{\mathrm{m}} \mathrm{b}^{\mathrm{n}} \mid \mathrm{m}+\mathrm{n}=\right.$ odd and $\left.\|\mathrm{w}\| \mathrm{n}>2\right\}$	4	CO2
Q 2	Design CFG for $\mathrm{L}=\left\{\mathrm{a}^{\mathrm{m}} \mathrm{b}^{\mathrm{n}} \mathrm{c}^{\mathrm{k}}, \mathrm{n}=\|\mathrm{m}-\mathrm{k}\|\right\}$	4	CO3
Q 3	Design Minimum DFA $\left\{\mathrm{w}: \mathrm{na}(\mathrm{w}) \mathrm{mod} 3>\mathrm{nb}(\mathrm{w}) \bmod 2, \mathrm{w} €(\mathrm{a}+\mathrm{b})^{*}\right\}$	4	CO1
Q 4	Construct Regular grammar for the language having input symbol $\sum=(a, b)$, and length of string is even.	4	CO2
Q 5	Explain closure properties of Recursive Enumerable Language under Intersection, Union, Concatenation and Complementation	4	CO 4
SECTION B			
Q 6.	Minimize following DFA using Myhill-Nerode Theorem	10	CO 2

Q 7.	Explain Chomsky classification of Grammar with example. OR Use the pumping lemma to show that following languages are not context free. $\text { L1: }\left\{a^{i} b^{j} / j=i^{3}\right\}$	10	CO1
Q 8.	Simplify given grammar and Convert to CNF $\mathrm{G} 2=\{\mathrm{S}->\mathrm{aA}\|\mathrm{bB}, \mathrm{~B}->\mathrm{bB}\| \varepsilon, \mathrm{A}->\mathrm{aA} \mid \varepsilon\}$	10	CO 3
Q 9.	For $\mathrm{S} \in(0+1)$ * let $\mathrm{d}(\mathrm{s})$ denote the decimal value of $\mathrm{s}(\mathrm{e} . \mathrm{g} . \mathrm{d}(101)=5)$. Let $\mathrm{L}=\left\{\mathrm{s} \in(0+1)^{*}\right.$ $\mathrm{d}(\mathrm{s}) \bmod 5=2$ and $\mathrm{d}(\mathrm{s}) \bmod 7!=4\}$. What is the type of language L? Explain.	10	$\mathrm{CO2}$
SECTION-C			
Q 10	Design a non -deterministic PDA for accepting the language $\mathrm{L}=\left\{\mathrm{ww}^{\mathrm{R}} \mathrm{w} \in(\mathrm{a}+\mathrm{b})^{+}\right\}$.	20	CO 3
Q 11	Construct a Turing Machine for language $\mathrm{L}=\{\mathrm{ww} \mid \mathrm{w} \in\{0,1\}\}$ OR Construct a Turing machine for $\mathrm{L}=\left\{\mathrm{a}^{\mathrm{n}} \mathrm{b}^{\mathrm{n}} \mathrm{a}^{\mathrm{n}} \mid \mathrm{n}>0\right\}$	20	CO4

