Name:

Enrolment No:

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES End Semester Examination, December 2019

SECTION A

Course: FORMAL LANGUAGES AND AUTOMATA THEORY

Semester: III

Program: B.Tech (CS+All IBM courses)

Time : 03 hrs.

Course Code: CSEG 3004

Max. Marks: 100

Instructions:

S. No.		Marks	CO
Q 1	Construct RE where, L= $\{a^mb^n m+n=odd and w _n \ge 2\}$	4	CO2
Q 2	Design CFG for L= $\{a^m b^n c^k, n= m-k \}$	4	CO3
Q 3	Design Minimum DFA {w: na(w)mod3>nb(w)mod 2,w €(a+b) [*] }	4	CO1
Q 4	Construct Regular grammar for the language having input symbol $\sum =(a,b)$, and length of string is even.	4	CO2
Q 5	Explain closure properties of Recursive Enumerable Language under Intersection, Union, Concatenation and Complementation	4	CO4
	SECTION B		
Q 6.	Minimize following DFA using Myhill-Nerode Theorem	10	CO2

Q 7.	Explain Chomsky classification of Grammar with example.			
	OR Use the pumping lemma to show that following languages are not context free.	10	CO1	
	L1: $\{a^{i}b^{j}/j=i^{3}\}$			
Q 8.	Simplify given grammar and Convert to CNF $G2 = \{S\text{->}aA bB, B\text{->}bB \epsilon, A\text{->}aA \epsilon\}$	10	CO3	
Q 9.	For $S \in (0 + 1)$ * let d(s) denote the decimal value of s (e.g. d(101) = 5). Let $L = \{s \in (0 + 1) \}$ d(s)mod5 = 2 and d(s)mod7 != 4}. What is the type of language L? Explain.	10	CO2	
SECTION-C				
Q 10	Design a non -deterministic PDA for accepting the language $L = \{ww^R w \in (a+b)^+\}$.	• 0	~~~	
-		20	CO3	
Q 11	Construct a Turing Machine for language $L = \{ww w \in \{0,1\}\}$			
	OR	20	CO4	
	Construct a Turing machine for $L = \{a^n b^n a^n \mid n > 0\}$			