Name:

Enrolment No:

Semester:

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES

End Semester Examination, Dec 2019

Course: Basic Electronics Engineering

Program: B.Tech. CSE-AIML, Big Data, SCF, Dev Ops, OSS, OGI, IoT smart city, Cyber Law Time 03 hrs.

Course Code: PHYS1003 Max. Marks: 100

Instructions:

1. Draw suitable diagrams wherever required.

2. Your answer should be concise and to the point.

	SECTION A (20 Marks)		
Attemp	t all the Questions		
S. No.		Marks	CO
Q 1	Plot the VI characteristics of silicon and germanium diodes on the same scales. Clearly label the various parameters.	4	CO1
Q 2	Explain the physical structure of PNP transistor. Also label various majority charge carriers for the terminals.	4	CO2
Q 3	Differentiate between Junction Field Effect Transistor (JFET) and Metal Oxide Semiconductor Field Effect Transistor (MOSFET).	4	CO2
Q 4	Briefly enumerate the characteristics of an ideal op-amp.	4	CO3
Q 5	Why is it necessary to modulate a signal for long distance transmission?	4	CO4
	SECTION B (20 Marks)		
Attemp	t all the Questions		
Q 6	Design a Zener voltage regulator which has variable load R_L and load current should vary between 10 mA to 85 mA. It is given that $V_z = 10 \text{V}$, $I_{Zmin} = 15 \text{ mA}$, $I_{Zmax} = 100 \text{ mA}$ and the series resistance $R_s = 40 \Omega$. Calculate the range of dc variation permissible and Zener power dissipation	10	CO1
Q 7	For the rectifier circuit given below, calculate (i) V_{DC} , (ii) rectification efficiency (iii) PIV	10	CO1
Q 8	Enumerate working of a p-channel MOSFET in Enhancement mode.	10	CO2
Q 9	Define modulation. Explain key differences between amplitude and frequency	10	CO4

	modulation.			
SECTION-C (40 Marks) Attempt any <i>Two</i> of the followings				
Q 10	 a) Draw the circuit diagram of an operational amplifier to be used as a differentiator. Also find the expression for the output voltage. b) Design a closed-loop inverting amplifier using op-amp. Also derive the expression for the output voltage. 	10	CO3	
Q 11	a) Design an op-amp based circuit using to implement the following signal manipulation: $V_{o}=6V_{1}+2V_{2}+4V_{3}$ where V_{1} , V_{2} and V_{3} are the inputs, use $R_{f}=10k\Omega$ b) Determine the output voltages at V_{2} and V_{3} for the circuit given below: $V_{1}=0.2V$	10	CO3	
Q.12	a) Explain the working of half wave rectifier. Determine the value efficiency and PIV of half wave rectifier.b) Plot the input and output V-I Characteristics of NPN transistor in CE	10	CO2	
	configuration. Derive the mathematical expression of α and β parameters of the BJT.	10		