Name: Enrolment No:		15 UPES UNIVERSITY WITH A PURPOSE	
\left.UNIVERSITY OF PETROLEUM AND ENERGY STUDIES End Semester Examination, Dec 2019 $\right]$Semester: Course: Basic Electronics Engineering Program: Course Code: PHYS1003 Instructions: 1. Draw suitable diagrams wherever required. 2. Your answer should be concise and to the point.			
Attempt all the Questions			
S. No.		Marks	CO
Q 1	Plot the VI characteristics of silicon and germanium diodes on the same scales. Clearly label the various parameters.	4	CO1
Q 2	Explain the physical structure of PNP transistor. Also label various majority charge carriers for the terminals.	4	CO2
Q 3	Differentiate between Junction Field Effect Transistor (JFET) and Metal Oxide Semiconductor Field Effect Transistor (MOSFET).	4	CO2
Q 4	Briefly enumerate the characteristics of an ideal op-amp.	4	CO3
Q 5	Why is it necessary to modulate a signal for long distance transmission?	4	CO4
Attempt all the Questions			SECTION B (20 Marks)
Q 6	Design a Zener voltage regulator which has variable load R_{L} and load current should vary between 10 mA to 85 mA . It is given that $V_{Z}=10 \mathrm{~V}, I_{\text {Zmin }}=15 \mathrm{~mA}, I_{Z \max }=100$ mA and the series resistance $R_{s}=40 \Omega$. Calculate the range of dc variation permissible and Zener power dissipation	10	CO1
Q 7	For the rectifier circuit given below, calculate (i) V_{DC}, (ii) rectification efficiency (iii) PIV	10	CO1
Q 8	Enumerate working of a p-channel MOSFET in Enhancement mode.	10	CO2
Q 9	Define modulation. Explain key differences between amplitude and frequency	10	CO4

	modulation.		
SECTION-C (40 Marks)			
Q 10	a) Draw the circuit diagram of an operational amplifier to be used as a differentiator. Also find the expression for the output voltage. b) Design a closed-loop inverting amplifier using op-amp. Also derive the expression for the output voltage.	10 10	$\mathrm{CO3}$
Q 11	a) Design an op-amp based circuit using to implement the following signal manipulation: $V_{o}=6 V_{1}+2 V_{2}+4 V_{3}$ where V_{1}, V_{2} and V_{3} are the inputs, use $R_{f}=10 \mathrm{k} \Omega$ b) Determine the output voltages at V_{2} and V_{3} for the circuit given below:	10	$\mathrm{CO3}$
Q. 12	a) Explain the working of half wave rectifier. Determine the value efficiency and PIV of half wave rectifier. b) Plot the input and output V-I Characteristics of NPN transistor in CE configuration. Derive the mathematical expression of α and β parameters of the BJT.	10 10	CO2

