Name: Enrolment No:			
Course Progra Course Instruc		100	
SECTION A (All Questions Compulsory, Each Question Carries 4 Marks)			
S. No.		Marks	CO
Q 1	How do you justify that divide and conquer algorithms take less time complexity in comparison with brute force algorithms.	4	CO1
Q2	How will you handle if the problem comprises of overlapping sub-problems?	4	CO3
Q3	Compute the MST using Prim's algorithm for the following graph	4	CO2
Q4	Explain time-space trade off and growth functions.	4	CO1
Q5	Discuss any two problems where approximation algorithms are needed	4	CO4
SECTION B(All Questions Compulsory, Each Question Carries 10 Marks)			
Q 6	Solve the following recurrence relations using recursion tree method a) $T(n)=2 T(n / 2)+n^{2}$ b) $T(n)=T(n / 2)+n$	10	CO1
Q 7	Devise an algorithm and explain to determine bi-connected Components. Prove the theorem that two bi-connected components can have at most one vertex as common and this vertex is an articulation point.	10	$\begin{aligned} & \mathrm{CO} 2, \\ & \mathrm{CO}, \end{aligned}$

Q 8	Consider the following items with their weights and profits and knapsack capacity as 5. Apply the Greedy strategy to fill the knapsack with maximum benefit,	10	$\begin{aligned} & \mathrm{CO}, \\ & \mathrm{CO} 2 \end{aligned}$
	Item \quad Weight Profit 4		
	1 2 30		
	2 10 20		
	3 6 18		
	4 8 10		
Q 9	Draw the state space tree for 4 queen's problem (OR) Consider the travelling salesperson problem given by following cost matrix $\left[\begin{array}{ccccc} 0 & 20 & 30 & 10 & 11 \\ 15 & \infty & 16 & 4 & 2 \\ 3 & 5 & \infty & 2 & 4 \\ 19 & 6 & 18 & \infty & 3 \\ 16 & 4 & 7 & 16 & \infty \end{array}\right]$ Obtain the optimum tour using dynamic reduction method. Draw a portion of state space tree using LCBB.	10	CO4
	SECTION-C (All Questions Compulsory, Each Question Carries 20 Marks)		
Q 10	Find an optimal parenthesization of a matrix-chain product for $4 \mathrm{X} 10,10 \mathrm{X} 3,3 \mathrm{X} 12$, 12X20 and 20X7. Justify dynamic programming solution takes less time complexity for this problem in comparison to brute force approach.	20	$\underset{C O 2}{\mathrm{CO}}$
Q 11	Let $m=31$ and $w=\{7,11,13,24\}$ draw a portions of state space tree using algorithm sum_subset(). Clearly show the solutions obtained. (OR) Let T be a text of length n, and let P be a pattern of length m. Describe an $O(n+m)$ time method for finding the longest prefix of P that is a substring of T .	20	$\begin{aligned} & \mathrm{CO} 2 \\ & \mathrm{CO}, \end{aligned}$

