Name:

Enrolment No:

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES End Semester Examination, December 2019

Course: Algorithm Design and Analysis Program: M.Tech (CSE) Course Code: CSEG 7001 Semester: I Time 03 hrs. Max. Marks: 100

Instructions:

	SECTION A (All Questions Compulsory, Each Question Carries 4 Marks)		
S. No.	(III Questions Compuisory, Luch Question Curries Triuries)	Marks	СО
Q 1	How do you justify that divide and conquer algorithms take less time complexity in comparison with brute force algorithms.	4	CO1
Q2	How will you handle if the problem comprises of overlapping sub-problems?	4	CO3
Q3	Compute the MST using Prim's algorithm for the following graph A 5 B 1 C 6 7 B G C B C	4	CO2
Q4	Explain time-space trade off and growth functions.	4	CO1
Q5	Discuss any two problems where approximation algorithms are needed	4	CO4
	SECTION B (All Questions Compulsory, Each Question Carries 10 Marks)		
Q 6	Solve the following recurrence relations using recursion tree method a) T(n)=2T(n/2)+n ² b) T(n)=T(n/2)+n	10	CO1
Q 7	Devise an algorithm and explain to determine bi-connected Components. Prove the theorem that two bi-connected components can have at most one vertex as common and this vertex is an articulation point.	10	CO2, CO3

	Item	Weight Profit	10	CO3, CO2
	1	2 30		
	2	10 20		
	3	6 18		
	4	8 10		
		sperson problem given by following cost matrix $\begin{bmatrix} 0 & 20 & 30 & 10 & 11 \\ 15 & \infty & 16 & 4 & 2 \\ 3 & 5 & \infty & 2 & 4 \\ 19 & 6 & 18 & \infty & 3 \\ 16 & 4 & 7 & 16 & \infty \end{bmatrix}$ using dynamic reduction method. Draw a portion of state	10	CO4
		SECTION-C		
Q 10	(All Question Find an optimal parenthesiz 12X20 and 20X7. Justify d	ns Compulsory, Each Question Carries 20 Marks) zation of a matrix-chain product for 4X10, 10X3, 3X12, ynamic programming solution takes less time complexity	20	CO2, CO3
Q 10 Q 11	(All Question Find an optimal parenthesia 12X20 and 20X7. Justify d for this problem in comparis	ns Compulsory, Each Question Carries 20 Marks) zation of a matrix-chain product for 4X10, 10X3, 3X12, ynamic programming solution takes less time complexity son to brute force approach. 9,24} draw a portions of state space tree using algorithm	20	