Name: Enrolment No:			
UNIVERSITY OF PETROLEUM AND ENERGY STUDIES End Semester Examination, December 2019			
SECTION A(Answer all the questions)			
S. No.		Marks	CO
Q 1.	Solve $x-7 \sqrt{x}+6=0$	4	CO1
Q 2 .	Test the continuity of the following function at the origin. $f(x)=\left\{\begin{array}{c} \frac{\|x\|}{x} ; x \neq 0 \\ 1 ; x=0 \end{array}\right.$	4	$\mathrm{CO3}$
Q 3.	Evaluate $\int \frac{e^{5 \log _{e} x}-e^{4 \log _{e} x}}{e^{3 \log _{e} x}-e^{2 \log _{e} x}} d x$	4	CO3
Q 4.	From a group of 7 men and 6 women, five persons are to be selected to form a committee so that at least 3 men are there in the committee. In how many ways can it be done?	4	CO4
Q 5.	When two dice are rolled, find the probability of getting a greater number on the first dice than the one on the second, given that the sum should equal 8 .	4	CO4
SECTION B (Answer all the questions. Q 9 has internal choice)			
Q 6.	Solve the following system of linear equations by Cramer's rule. $3 x+y+z=2 ; 2 x-4 y+3 z=-1 ; 4 x+y-3 z=-11$	10	CO1
Q 7.	A, B and C are three candidates for the position of principal in a certain college whose chances of getting the appointment are in the proportion $4: 2: 3$ respectively. The probability that A if selected would introduce co-education in the college is 0.3 . The probabilities of B and C doing the same are respectively 0.5 and 0.8 . (i) What is the probability that there will be co-education in the college after appointing one of them as principal? (ii) If there is co-education after the selection of principal, what is the probability that C is the principal?	10	CO4
Q 8.	Let A and B be independent events with $P(A)=\frac{1}{4}$ and $P(A \cup B)=2 P(B)-P(A)$. Find (i) $P(B)$ (ii) $P(A \mid B)$ (iii) $P\left(B^{c} \mid A\right)$.	10	CO4
Q 9.	Prove that $\int e^{a x} \cos b x d x=\frac{e^{a x}}{a^{2}+b^{2}}(a \cos b x+b \sin b x)$. (OR) Evaluate $\int \frac{1}{(x-1)^{2}(x+1)} d x$.	10	CO3

SECTION-C(Answer all the questions. Q 11A-Q 11B have internal choice)			
Q 10A.	Define continuity of a function on an interval. If $f(x)=\left\{\begin{array}{c}5, \text { if } x \leq 2 \\ a x+b, \text { if } 2<x<10, \\ 21, \text { if } x \geq 10\end{array}\right.$ determine the values of a and b so that $f(x)$ is continuous.	10	CO 3
Q 10B.	If $y=(\sqrt{x})^{(\sqrt{x})^{(\sqrt{x})^{\cdots \infty}}}$, show that $\frac{d y}{d x}=\frac{y^{2}}{x(2-y \log x)}$.	10	CO 3
Q 11A.	The daily $\operatorname{cost} C$, of operating a hospital is a linear function of the number of in-patients I, out-patients P, plus a fixed cost a, i.e., $C=a+b P+d I$. Given the following data for three days, find the values of a, b and d by setting up a linear system of equations and solving them. (OR) An amount of Rs. 4,000 is distributed into three investments at the rate of $7 \%, 8 \%$ and 9% per annum respectively. The total annual income is Rs. 317.50 and the total annual income from the first investment is Rs. 5 more than the income from the second. Find the amount of each investment.	10	CO2
Q 11B.	Show that $A=\left(\begin{array}{lll}1 & 2 & 2 \\ 2 & 1 & 2 \\ 2 & 2 & 1\end{array}\right)$ satisfies the equation $A^{2}-4 A-5 I_{3}=0$ and hence find A^{-1}. (OR) If $A=\left[\begin{array}{ccc}\cos x & -\sin x & 0 \\ \sin x & \cos x & 0 \\ 0 & 0 & 1\end{array}\right]$, prove that $(\operatorname{adj} A) A=\|A\| I_{3}$.	10	CO2

