Name:

Enrolment No:

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES End Semester Examination, December 2019

Program: BCA (IoT and BFSI) Course: MATHEMATICS Course Code: MATH 1006

Semester: I Time 03 hrs. Max. Marks: 100

	SECTION A (Answer all the questions)					
S. No.		Marks	СО			
Q 1.	Solve $x - 7\sqrt{x} + 6 = 0$	4	CO1			
Q 2.	Test the continuity of the following function at the origin. $f(x) = \begin{cases} \frac{ x }{x}; & x \neq 0\\ 1; & x = 0 \end{cases}$	4	C O 3			
Q 3.	Evaluate $\int \frac{e^{5\log_e x} - e^{4\log_e x}}{e^{3\log_e x} - e^{2\log_e x}} dx$	4	CO3			
Q 4.	From a group of 7 men and 6 women, five persons are to be selected to form a committee so that at least 3 men are there in the committee. In how many ways can it be done?	4	CO4			
Q 5.	When two dice are rolled, find the probability of getting a greater number on the first dice than the one on the second, given that the sum should equal 8.	4	CO 4			
Q 6.	(Answer all the questions. Q 9 has internal choice) Solve the following system of linear equations by Cramer's rule.		~~~			
X 0.	3x + y + z = 2; 2x - 4y + 3z = -1; 4x + y - 3z = -11	10	CO1			
Q 7.	 <i>A</i>, <i>B</i> and <i>C</i> are three candidates for the position of principal in a certain college whose chances of getting the appointment are in the proportion 4: 2: 3 respectively. The probability that <i>A</i> if selected would introduce co-education in the college is 0.3. The probabilities of <i>B</i> and <i>C</i> doing the same are respectively 0.5 and 0.8. (i) What is the probability that there will be co-education in the college after appointing one of them as principal? (ii) If there is co-education after the selection of principal, what is the probability that <i>C</i> is the principal? 	10	CO4			
Q 8.	Let <i>A</i> and <i>B</i> be independent events with $P(A) = \frac{1}{4}$ and $P(A \cup B) = 2P(B) - P(A)$. Find (i) $P(B)$ (ii) $P(A B)$ (iii) $P(B^c A)$.	10	CO4			
Q 9.	Find (i) $P(B)$ (ii) $P(A B)$ (iii) $P(B^{c} A)$. Prove that $\int e^{ax} \cos bx \ dx = \frac{e^{ax}}{a^{2}+b^{2}}(a \cos bx + b \sin bx)$. (OR) Evaluate $\int \frac{1}{(x-1)^{2}(x+1)} \ dx$.	10	CO3			

SECTION-C (Answer all the questions. Q 11A-Q 11B have internal choice)					
Q 10A.	Define continuity of a function on an interval. If $f(x) = \begin{cases} 5, & \text{if } x \le 2\\ ax + b, & \text{if } 2 < x < 10,\\ 21, & \text{if } x \ge 10 \end{cases}$	10	CO3		
	determine the values of a and b so that $f(x)$ is continuous.				
Q 10B.	If $y = (\sqrt{x})^{(\sqrt{x})^{(\sqrt{x})^{\dots^{\infty}}}}$, show that $\frac{dy}{dx} = \frac{y^2}{x(2-y\log x)}$. The daily cost <i>C</i> , of operating a hospital is a linear function of the number of in-patients	10	CO3		
Q 11A.	<i>I</i> , out-patients <i>P</i> , plus a fixed cost <i>a</i> , i.e., $C = a + bP + dI$. Given the following data for three days, find the values of <i>a</i> , <i>b</i> and <i>d</i> by setting up a linear system of equations and solving them. $ \frac{Day C I P}{1 6950 40 10} $ $ 2 6725 35 9 3 7100 40 12 $ (OR) An amount of Rs. 4,000 is distributed into three investments at the rate of 7%, 8% and 9% per annum respectively. The total annual income is Rs. 317.50 and the total annual income from the first investment is Rs. 5 more than the income from the second. Find the amount of each investment.	10	CO2		
Q 11B.	Show that $A = \begin{pmatrix} 1 & 2 & 2 \\ 2 & 1 & 2 \\ 2 & 2 & 1 \end{pmatrix}$ satisfies the equation $A^2 - 4A - 5I_3 = 0$ and hence find A^{-1} .				
	(OR) If $A = \begin{bmatrix} \cos x & -\sin x & 0\\ \sin x & \cos x & 0\\ 0 & 0 & 1 \end{bmatrix}$, prove that $(adj A)A = A I_3$.	10	CO2		