UNIVERSITY OF PETROLEUM & ENERGY STUDIES DEHRADUN

End Sem Examination – May 2017

Name of the Program: BBA (LM) Sub : Research Methodology and Report writing Max. Marks: 100 This question paper has 4 page(s). This paper has 4 sections.

Semester – Four

Duration : 3 Hrs.

Exchange of the calculator is availing unfair means.

Note: Solve all questions of one section together.

Section A (20 Marks)

1. The alternate hypothesis specify the value which the researcher believes to hold true.

2. Research designs are the blue print of the research to be conducted.

3. All hypothesis are made in question form.

4. A hypothesis that has two sub hypothesis is is called two directional hypothesis.

5.A Hypothesis, which is specified with a hope of rejection is called the null hypothesis.

6. With ANOVA, it is possible to compare means of more than two populations.

7. The formula for degree of freedom is n-1 always.

8. Quota sampling is same as the stratified sampling.

9. If the number of control characteristics in a quota sampling is increased, it will result in decreasing the number of total cells.

10. One of the important features of good research is the replicability of the findings

Section B (Solve any four) (Five Marks each) 20 Marks

- 1. Explain the five layers of research onion?
- 2. Explain difference between Parametric and Non parametric Tests?
- 3. What is non Probability sampling and when it is used?
- 4. What is the difference between one way ANOVA and Two Way ANOVA?
- 5. What are application of Chi-Square test.

Section C (Solve any two Questions) (15 Marks Each) : 30 Marks

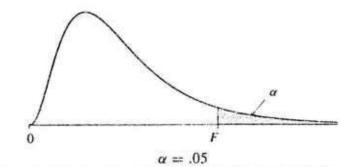
Ques1: A sample of 16 graduating students of the college was taken and information was obtained for their starting salary. The mean monthly salary was found to be INR 30200 with a standard deviation of

960. The past data on starting salary has a mean value of 30000. Using 5 percent level of significance, can we conclude that average salary is different from 30000 ?

$$t_{(dof = 15, los = .025)} = 2.31$$

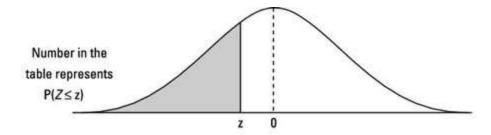
Ques2: A Sample of 200 Bulb Made by a company gives a mean lifetime of 1540 hours with a standard deviation of 42 hours. Is it likely that the sample has been drawn from the population with a mean lifetime of 1500 hours? Use 5 Percent level of significance.

Z table is attached


Question 3: What chi square test. What are disadvantages of it. What is the difference between sample and census . (5+5+5)

Section D (30 Marks)

Cholesterol contents of four competing diet foods on the basis of following data which were obtained for three randomly taken six ounce package of each of diet foods.


We want to test whether the difference among the sample means can be attributed to chance at the five percent level of significance.

	Cholesterol content	Cholesterol content	Cholesterol content
Diet Food A	3.6	4.1	4.0
Diet Food B	3.1	3.2	3.9
Diet Food C	3.2	3.5	3.5
Die Food D	3.5	3.8	3.8

	df_1									
df_2	1	2	3	4	5	6	8	12	24	\sim
1	161.4	199.5	215.7	224.6	230.2	234.0	238.9	243.9	249.0	254.3
2	18.51	19.00	19.16	19.25	19.30	19.33	19.37	19.41	19.45	19.50
3	10.13	9.55	9.28	9.12	9.01	8.94	8.84	8.74	8.64	8.53
4	7.71	6.94	6.59	6.39	6.26	6.16	6.04	5.91	5.77	5.63
5	6.61	5.79	5.41	5.19	5.05	4.95	4.82	4.68	4.53	4.36
6	5.99	5.14	4.76	4.53	4.39	4.28	4.15	4.00	3.84	3.67
7	5.59	4.74	4.35	4.12	3.97	3.87	3.73	3.57	3.41	3.23
8	5.32	4.46	4.07	3.84	3.69	3.58	3.44	3.28	3.12	2.93
9	5.12	4.26	3.86	3.63	3.48	3.37	3.23	3.07	2.90	2.71
10	4.96	4.10	3.71	3.48	3.33	3.22	3.07	2.9i	2.74	2.5-
11	4.84	3.98	3.59	3.36	3.20	3.09	2.95	2.79	2.61	2.40
12	4.75	3.88	3.49	3.26	3.11	3.00	2.85	2.69	2.50	2.30
13	4.67	3.80	3.41	3.18	3.02	2.92	2.77	2.60	2.42	2.2
14	4.60	3.74	3.34	3.11	2.96	2.85	2.70	2.53	2.35	2.13
15	4 54	3.68	3.29	3.06	2.90	2.79	2.64	2.48	2.29	2.07
16	4.49	3.63	3.24	3.01	2.85	2.74	2.59	2.42	2.24	2.0
17	4.45	3.59	3.20	2.96	2.81	2.70	2.55	2.38	2.19	1,90
18	4.41	3.55	3.16	2.93	2.77	2.66	2.51	2.34	2.15	1.9
19	4.38	3.52	3.13	2.90	2 74	2.63	2.48	2.31	2.11	1.83
20	4.35	3.49	3.10	2.87	2.71	2.60	2.45	2.28	2.08	1.8-
21	4.32	3.47	3.07	2.84	2.68	2.57	2.42	2.25	2.05	1.8
22	4.30	3.44	3.05	2.82	2.66	2.55	2.40	2.23	2.03	1.78
23	4.28	3.42	3.03	2.80	2.64	2.53	2.38	2.20	2 (6)	1.70
24	4.26	3.40	3.01	2.78	2.62	2.51	2.36	2.18	1.98	1.7.
25	4.24	3.38	2.99	2.76	2.60	2.49	2.34	2.16	1.96	1.7
26	4.22	3.37	2.98	2,74	2.59	2.47	2.32	2.15	1.95	1.65
27	4.21	3.35	2.96	2.73	2.57	2.46	2.30	2.13	1.93	1.67
28	4.20	3.34	2.95	2.71	2.56	2.44	2.29	2.12	1.91	1.65
29	4.18	3.33	2.93	2.70	2.54	2.43	2.28	2.10	1.90	1.6-
30	4.17	3.32	2.92	2.69	2.53	2.42	2.27	2.09	1.89	1.63
40	4.08	3.23	2.84	2.61	2.45	2.34	2.18	2.00	1.79	1.5
60	4.00	3.15	2.76	2.52	2.37	2.25	2.10	1.92	1.70	1.30
120	3.92	3.07	2.68	2,45	2.29	2.17	2.02	1.83	1.61	1.25
\sim	3.84	2.99	2.60	2.37	2.21	2.09	1.94	1.75	1.52	1.00

Source: From Table V of R. A. Fisher and F. Yates, *Statistical Tables for Biological, Agricultural and Medical Research*, published by Longman Group Ltd., London, 1974. (Previously published by Oliver & Boyd, Edinburgh.) Reprinted by permission of the authors and publishers.

z	0.00	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09
-3.6	.0002	.0002	.0001	.0001	.0001	.0001	.0001	.0001	.0001	.0001
-3.5	.0002	.0002	.0002	.0002	.0002	.0002	.0002	.0002	.0002	.0002
-3.4	.0003	.0003	.0003	.0003	.0003	.0003	.0003	.0003	.0003	.0002
-3.3	.0005	.0005	.0005	.0004	.0004	.0004	.0004	.0004	.0004	.0003
-3.2	.0007	.0007	.0006	.0006	.0006	.0006	.0006	.0005	.0005	.0005
-3.1	.0010	.0009	.0009	.0009	.0008	.0008	.0008	.0008	.0007	.0007
-3.0	.0013	.0013	.0013	.0012	.0012	.0011	.0011	.0011	.0010	.0010
-2.9	.0019	.0018	.0018	.0017	.0016	.0016	.0015	.0015	.0014	.0014
-2.8	.0026	.0025	.0024	.0023	.0023	.0022	.0021	.0021	.0020	.0019
-2.7	.0035	.0034	.0033	.0032	.0031	.0030	.0029	.0028	.0027	.0026
-2.6	.0047	.0045	.0044	.0043	.0041	.0040	.0039	.0038	.0037	.0036
-2.5	.0062	.0060	.0059	.0057	.0055	.0054	.0052	.0051	.0049	.0048
-2.4	.0082	.0080	.0078	.0075	.0073	.0071	.0069	.0068	.0066	.0064
-2.3	.0107	.0104	.0102	.0099	.0096	.0094	.0091	.0089	.0087	.0084
-2.2	.0139	.0136	.0132	.0129	.0125	.0122	.0119	.0116	.0113	.0110
-2.1	.0179	.0174	.0170	.0166	.0162	.0158	.0154	.0150	.0146	.0143
-2.0	.0228	.0222	.0217	.0212	.0207	.0202	.0197	.0192	.0188	.0183
-1.9	.0287	.0281	.0274	.0268	.0262	.0256	.0250	.0244	.0239	.0233
-1.8	.0359	.0351	.0344	.0336	.0329	.0322	.0314	.0307	.0301	.0294
-1.7	.0446	.0436	.0427	.0418	.0409	.0401	.0392	.0384	.0375	.0367
-1.6	.0548	.0537	.0526	.0516	.0505	.0495	.0485	.0475	.0465	.0455
-1.5	.0668	.0655	.0643	.0630	.0618	.0606	.0594	.0582	.0571	.0559
-1.4	.0808	.0793	.0778	.0764	.0749	.0735	.0721	.0708	.0694	.0681
-1.3	.0968	.0951	.0934	.0918	.0901	.0885	.0869	.0853	.0838	.0823
-1.2	.1151	.1131	.1112	.1093	.1075	.1056	.1038	.1020	.1003	.0985
-1.1	.1357	.1335	.1314	.1292	.1271	.1251	.1230	.1210	.1190	.1170
-1.0	.1587	.1562	.1539	.1515	.1492	.1469	.1446	.1423	.1401	.1379
-0.9	.1841	.1814	.1788	.1762	.1736	.1711	.1685	.1660	.1635	.1611
-0.8	.2119	.2090	.2061	.2033	.2005	.1977	.1949	.1922	.1894	.1867
-0.7	.2420	.2389	.2358	.2327	.2296	.2266	.2236	.2206	.2177	.2148
-0.6	.2743	.2709	.2676	.2643	.2611	.2578	.2546	.2514	.2483	.2451
-0.5	.3085	.3050	.3015	.2981	.2946	.2912	.2877	.2843	.2810	.2776
-0.4	.3446	.3409	.3372	.3336	.3300	.3264	.3228	.3192	.3156	.3121
-0.3	.3821	.3783	.3745	.3707	.3669	.3632	.3594	.3557	.3520	.3483
-0.2	.4207	.4168	.4129	.4090	.4052	.4013	.3974	.3936	.3897	.3859
-0.1	.4602	.4562	.4522	.4483	.4443	.4404	.4364	.4325	.4286	.4247
-0.0	.5000	.4960	.4920	.4880	.4840	.4801	.4761	.4721	.4681	.4641