

UNIVERSITY OF PETROLEUM & ENERGY STUDIES

DEHRADUN

End Semester Examination-May 2017

Program/course	: MBA AVM	Semester	: II
Subject	: Econometrics	Max. Marks	: 100
Code	: MBCE702	Duration	: 3 Hrs
No. of page/s	: 11		

Section-A

Q1. Answer the questions:

10 X 2= 20

I. Regression analysis deals with estimating the mean value of _____.

- a. Dependent variable c. Random variable
 - b. independent variable d. Residuals
- II. Which of the following statements is true concerning the population regression function (PRF) and sample regression function (SRF)?
 - a. The PRF is the estimated model
 - b. The PRF is used to infer likely values of the SRF
 - c. Whether the model is good can be determined by comparing the SRF and the PRF
 - d. The PRF is a description of the process thought to be generating the data.

III. When the estimated slop coefficient in the simple regression model β_2 , is zero, then

a.
$$r^2 = 0$$
 c. $0 \le r^2 \le 1$

	b.	$r^2 \leq 1$		$r^2 \leq 0$
IV.	E(Y)	X_i)=f(X_i) is referred to as		
	a.	Conditional expectation function	c.	Population regression line
	b.	Intercept line	d.	Linear regression line
V.	For c	oefficient of determination r^2 for	a regro	ession model
	a.	$r^2 = 0$	c.	$0 \le r^2 \le 1$
	b.	$r^2 \leq 1$	d.	$r^2 \leq 0$
VI.	If coe	efficient of determination $r^2 = 1$ for	or a reg	ression model, then
	a.	it is a perfect fit model	c.	X = Y
	b.	$X \leq Y$	d.	$\mathrm{E}(\mathrm{Y}) = \mathrm{E}(\mathrm{X})$
VII.	$u_i = 1$	$Y_i - E(Y \mid X_i)$ is known as		
	a.	deviation of an expected Y _i around its mean value	c.	deviation of an individual X _i around its expected value
	b.	deviation of an individual Y _i around its maximum value	d.	deviation of an individual Y _i around its expected value
VIII.	Syste	ematic component of the equation	, $Y_i = I$	$E(Y X_i) + u_i$ is
	a.	Ui	c.	$E(Y \mid X_i)$
	b.	Y_i	d.	X_i

IX. In confidence interval estimation, $\alpha = 5\%$, this means that this interval includes the true β with probability of _____.

а.	5%	с.	105%
b.	95%	d.	100%

- X. The least square estimators are interval estimators.
 - a. True c. Partially true
 - b. false d. Can't be said

Section **B**

Attempt any four questions

Q2. The regression result of passenger air traffic (PAT) is given below. State which explanatory variables are statistically and significantly affecting PAT.

PAT	β Coeff.	Calculated t-	Critical t-Value (at
		Value	5%)
X1	-0.016	-3.29	1.697
X2	0.028	3.61	1.697
X3	0.059	2.51	1.697
X4	0.320	3.64	1.697
X5	-0.072	-1.40	1.697
X6	0.360	4.32	1.697
X7	-12.03	-1.11	1.697
X8	1.770	9.83	1.697
Const.	-78.99	-4.47	1.697

Q3. From the regression result of cargo air traffic (CAT), p-values are given below. State at what level independent variables are affecting CAT significantly.

CAT	p > t	Level of Sig.
X1	0.016	
X2	0.010	
X3	0.000	
X4	0.223	
X5	0.027	

4X5 = 20

Q4.Formulate one passenger air traffic (PAT)function, write down its functional form and econometric specification for the following variables:

PAT: passenger air traffic GDP: Gross Domestic Product M: Import of goods X: Export of goods

Q5. Consider the following regression output:

 $Y_i = 0.2033 + 0.6560X_t$ $se = (0.0976) \ (0.1961)$ $P = \ (0.005) \ (0.003)$ $RSS = 0.0544 \ ESS = 0.0358 \ r^2 = 0.397$

Where, Y = Passenger air traffic X = Per capita GDP

The regression results were obtained from a sample of 19 countries.

- a) How do you interpret this regression?
- b) Test the hypothesis that H_0 : $\beta_2 = 0$ against H_1 : $\beta_2 \neq 0$. Which test do you use? And why?

Q6. The ANOVA table of one regression result of cargo air traffic is given below.

The critical value of F(6, 25)=2.4904 and $\alpha = 5\%$.

SOURCE	SS	Df	MSS
MODEL	2513370.09	6	
RESIDUAL			
TOTAL	2549152.88	31	

Compute (i) RSS (ii) Degree of freedom for RSS, (iii) Mean sum of squares, (ii) F and (iii) state the overall significance of the model.

Section C

Answer any two questions

Q7. In the following multiple regression result, Air transport, passengers carried (ATP) is estimated using factors such as gross domestic savings (% of GDP) (gds); Industry, value added (constant 2010 US\$) (iva); and inflation, consumer prices (annual %) (icp).

Source	55	df	MS		Number of obs F(3, 14)	
Model Residual	5.2156e+16 1.1445e+16		7385e+16 1752e+14		Prob > F R-squared Adj R-squared	= 0.0000 = 0.8200
Total	6.3601e+16	17 3.	7 413e+15		Root MSE	= 2.9e+07
ар	Coef.	Std. Err	. t	P> t	[95% Conf.	Interval]
gds iva icp _cons	-934750 .0002858 -3454707 -1.31e+08	5112938 .0000551 8006250 2.27e+08	5.19 -0.43	0.858 0.000 0.673 0.573	-1.19e+07 .0001677 -2.06e+07 -6.17e+08	1.00e+07 .0004039 1.37e+07 3.55e+08

- (i) Interpret all the slope coefficients
- (ii) Interpret intercept, (iii) Interpret R^2 , (iv) Test joint hypothesis.
- Q8. Define and discuss Gauss-Markov theorem.
- Q9. In the following multiple regression result, air transport, freight (af) is estimated using factors such as gross domestic savings (% of GDP) (gds); inflation, consumer prices (annual %) (icp); and gross capital formation (gcf).

Test individual and joint hypothesis of the following regression results with interpretation of all the coefficients.

Multiple Regression Results

Source	55	df	MS		Number of obs F(3, 14)	
Model Residual	448872382 45590940.8		9624127 6495.77		Prob > F R-squared Adj R-squared	= 0.0000 = 0.9078
Total	494463323	17 290	86077.8		Root MSE	= 1804.6
af	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
gds icp gcf _cons	-1752.01 498.6813 8.84e-09 38650.13	249.0144 534.3234 1.94e-09 8028.947	-7.04 0.93 4.56 4.81	0.000 0.366 0.000 0.000	-2286.093 -647.3285 4.68e-09 21429.75	-1217.928 1644.691 1.30e-08 55870.5

Section D

Answer any one question

 $1 \ge 30 = 30$

Q10. Examine critically all 10 assumptions of classical linear regression model.

Q11. Describe methodology of econometrics with suitable example from aviation sector.