

UNIVERSITY OF PETROLEUM & ENERGY STUDIES DEHRADUN

End Semester Examination-May 2017

Program/course	: MA Economics (EE)	Semester	: II				
Subject	: Econometric Modeling	Max. Marks	: 100				
Code	: MECE 731	Duration	: 3 Hrs				
No. of page/s	: 14						

Section-A

Q1. Answer the questions:

20 X 1= 20

I.	If int	ercept is positive then regression lin		
	a.	Cut x-axis	c.	Cut y-axis.
	b.	Pass through origin	d.	Slope upwar
II.	Heter	coscedasticity is a		
	a.	Problem of time series data	c.	Primary data
	b.	Problem of cross-sectional data	d.	Secondary data
III.	Unde	r the least square procedure, RSS nee	ed to be	·
	a.	Minimize	c.	Squared
	b.	Maximize	d.	Multiplied with error term
IV.	When	n choosing between regression mod	lels it is	preferable to choose the one with:
	a.	The highest R ² .	c.	The highest F value

	b.	The least number of independent variables.	d.	The most number of independent variables.
V.	When	n the estimated slop coefficient in the	e simple	e regression model $\hat{\beta}_2$, is zero, then
	a.	$r^2 = 0$	c.	$0 \le r^2 \le 1$
	b.	$r^2 \leq 1$	d.	$r^2 \leq 0$
VI.	For c	oefficient of determination r^2 for a re-	egressio	on model
	a.	$r^{2} = 0$		$0 \le r^2 \le 1$
	b.	$r^2 \leq 1$	d.	$r^2 \leq 0$
VII.	E(Y	X_i) = $f(X_i)$ is known as		
	a.	conditional expectation function	c.	sample expectation function
	b.	Cobb-Douglas production function	d.	conditional mean function
VIII.	$u_i = 1$	$Y_i = E(Y \mid X_i)$ is known as		
	a.	deviation of an expected Y _i around its mean value	c.	deviation of an individual X _i around its expected value
	b.	deviation of an individual Y _i around its maximum value	d.	deviation of an individual Y_i around its expected value
IX.	The d	$lpha$ in a confidence interval given by $ { m I}$	$\Pr(\hat{\beta}_2 -$	$-\delta \leq \beta_2 \leq \hat{\beta}_2 + \delta = 1 - \alpha$ is known as
	a.	Confidence coefficient	c.	Level of significance
	b.	Level of confidence	d.	Confidence Limit
Х.	Syste	ematic component of the equation, Y_i	= E(Y)	$(X_i) + u_i$ is
	a.	<i>U</i> _i	c.	$E(Y \mid X_i)$
	b.	Y_i	d.	X_i
XI.	The o	lpha in a confidence interval given by F	$\Pr\left(\beta_2 - \beta_2\right)$	$-\delta \leq \beta_2 \leq \hat{\beta}_2 + \delta = 1 - \alpha$ should be
	a.	<0	c.	>0 and <1

XII.		<1 nfidence interval estimation, $\alpha = 5\%$ bility of	d. , this n	>0 heans that this interval includes the true β with
	a.	5%	c.	105%
	b.	95%	d.	100%
XIII.	\hat{Y}_i is	the estimator of		
	a.	$E(Y \mid X_i)$	c.	$E(X_i)$
	b.	Y_i	d.	X_i
XIV.		h we do not reject a H ₀ for β_2 this measure dence interval defined by	ans that	the value of β_2 under H ₀ falls within the
	a.	$(1-\alpha)\%$	c.	$100(1+\alpha)\%$
	b.	$100(1-\alpha)\%$	d.	$(100 - \alpha)\%$
XV.	The s	ample parameter estimator $\hat{\beta}_2$ follow	/S	·
	a.	t-distribution	c.	F-distribution
	b.	Normal distribution	d.	Chi-square distribution
XVI.	When	n we reject the null hypothesis, our fir	ndings i	s said to be
	a.	Efficient	c.	Changing with unit change in explanatory variable
	b.	Statistically Reliable	d.	Statistically significant
XVII.	The l	owest significance level at which a nu	ıll hypo	othesis can be rejected is determined by
	a.	t-value	c.	F-value
XVIII.	b. In 1	p-value $Y_i = \beta_1 + \beta_2 X_i + u_i, \beta_2 \text{ indicates}$	d. s	Chi-square statistic
	a.	Change in Y due to unit change in X	c.	Change in Y due to unit change in u

XIX.	b. The	Change in X due to unit change in Y regression line passes through		Change in u due to unit change in Y
	a.	the population means of <i>Y</i> and <i>X</i>	c.	the sample variance of <i>Y</i> and <i>X</i>
	b.	the sample means of <i>Y</i> and <i>X</i>	d.	the population variance of <i>Y</i> and <i>X</i>
XX.	Dro	pping any relevant variable(s) from 1	regressi	on model leads to
	a.	specification bias	c.	systematic bias
	b.	random bias	d.	Bias

Section B

Attempt any four questions

Q2. The VIF of regression considering oil consumption (OC) as dependent variable is given below. Analysis both VIF and TOL and discuss about presence of multicollinearity in the model.

Variable	VIF	1/VIF
om op pgdp co2 ox or cop	255.75 101.03 60.08 47.68 23.66 18.24 3.75	0.003910 0.009898 0.016643 0.020972 0.042272 0.054812 0.266887
Mean VIF	72.88	

Q3. State positive or negative relationship between OC and independent variables.

Sl.No.	OC	β Coeff.	Calculated t- Value	Critical t-Value (at 5%)	State positive or negative relationship between OC and independent variables
1	OE	0.018	-2.30	1.697	
2	RT	-0.030	4.70	1.697	
3	Р	-0.070	2.56	1.697	
4	OP	-0.862	6.65	1.697	
5	PR	0.073	-1.33	1.697	

4X5 = 20

6	Const. 55	5.40 -4	.44 1	1.697	
---	-----------	---------	-------	-------	--

Q4.Formulate one energy consumption function, write down its functional form and econometric specification for the following variables:

- C : amount of energy consumed per annum
- Y : GDP of a given country
- FDI : FDI inflow for a given country

Q5. Consider the following regression output:

 $\hat{Y}_i = 0.3133 - 0.4563 X_t$ $se = (0.0976) \ (0.1961)$ $P = \ (0.005) \ (0.003)$ $RSS = 0.0544 \ ESS = 0.0358 \ r^2 = 0.397$

Where, Y = Household Electricity Consumption in rural area (in KW)

X = Electricity tariff (in Rupees)

The regression results were obtained from a sample of 19 households.

- a) How do you interpret this regression?
- b) Test the hypothesis that H_0 : $\beta_2 = 0$ against H_1 : $\beta_2 \neq 0$. Which test do you use? And why?

Q6. The ANOVA table of one regression result is given below.

The critical value of F(1, 16) = 2.4904 and $\alpha = 5\%$.

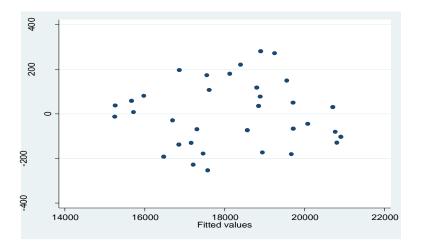
Source	SS	Df	MSS
Model	326765512	1	
Residual	167697811	16	
Total	494463323	17	

Compute (i) Mean sum of squares, (ii) F and (iii) state the overall significance of the model.

Section C

Answer any two questions

2 X 15 = 30


Q7. In the following multiple regression result, Carbon Emission (co2) is estimated using factors such as oil consumption (oc), per capita GDP (pgdp), import of goods and services (om), and export of goods and services (ox).

Source	SS	df	MS		Number of obs F(4, 29)	
Model Residual	1020938.61 21585.3769		255234.652		Prob > F R-squared Adj R-squared	= 0.0000 = 0.9793
Total	1042523.99	33 3	1591.6359		Root MSE	= 27.282
co2	Coef.	Std. Er	r. t	P> t	[95% Conf.	Interval]
oc pgdp om ox _cons	.1308342 0136371 .014613 0092261 294.4371	.014484 .004587 .010278 .017646 170.192	8 -2.97 5 1.42 9 -0.52	0.000 0.006 0.166 0.605 0.094	.1012106 0230202 0064089 0453181 -53.64647	.1604579 0042539 .0356349 .0268659 642.5206

Using individual and joint hypothesis testing find out relationship between co2 and its determinants.

Q8. Detect problems of heteroscedasticity for a regression model, where oil consumption (oc) is estimated. The post estimation results are given below. Critically analyze and interpret the results.

i. Graphical Method

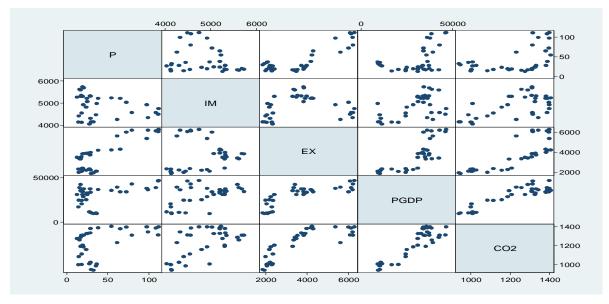
ii. Breusch-Pagan/ Cook-Weisberg test

```
Breusch-Pagan / Cook-Weisberg test for heteroskedasticity
Ho: Constant variance
Variables: fitted values of oc
chi2(1) = 0.05
Prob > chi2 = 0.8280
```

iii. Park Test: Park suggests that σ_i^2 is some function of the explanatory variable X_i . The functional form he suggested was

 $\sigma^2_i = \sigma^2 X^{\beta}_i \ e^{vi}$

Using this functional form suggest how to detect heteroscedasticity.


Q9. The multiple regression and its post estimation results are given below. Interpret the post estimation results and justify whether multicollinearity is present in the model or not.

Multiple Regression Results

Source Model Residual	55 7938423.38 123989.991		M5 7684.68 5.51694		Number of obs F(5, 29) Prob > F R-squared Adj R-squared	= 371.34 = 0.0000 = 0.9846
Total	8062413.37	34 237	L29.805		Root MSE	= 65.387
oc	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
p im ex pgdp co2 _cons	-3.834641 .6252913 1236515 .0050046 1.122187 1068.624	.8662552 .0466814 .0271815 .0024767 .2407524 161.3615	-4.43 13.39 -4.55 2.02 4.66 6.62	0.000 0.000 0.053 0.000 0.000	-5.606331 .5298171 1792438 000061 .6297929 738.6027	-2.06295 .7207655 0680591 .0100701 1.614581 1398.645

Post Estimation Tests

(i) Scatter Plot Matrix

(ii) Correlation Matrix

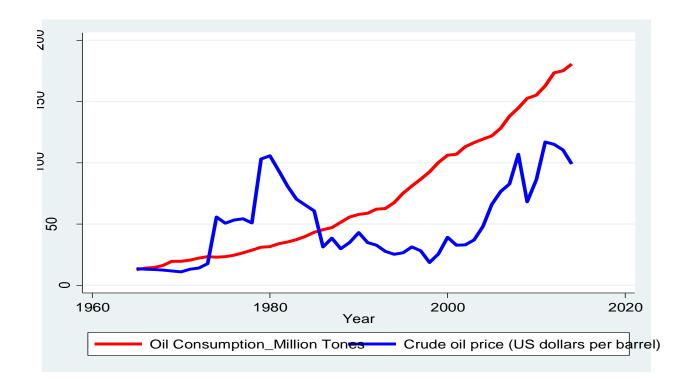
	oc	p	im	ex	pgdp	co2
oc p im ex pgdp co2	1.0000 -0.5050 0.9419 -0.1272 0.3637 0.4391	1.0000 -0.2473 0.8305 0.4548 0.4728	1.0000 0.1329 0.5306 0.6168	1.0000 0.7883 0.7948	1.0000 0.8907	1.0000

(iii) Variance Inflation Factor (VIF) and Tolerance(TOL)

Variable	VIF	1/VIF
ex co2 pgdp p im	13.06 10.80 6.05 5.92 4.48	0.076584 0.092562 0.165358 0.168914 0.223424
Mean VIF	8.06	

Section D

Answer all questions


Q10. Results of summery statistics and stationarity of oil consumption (oc) are given below along with some result of crude oil production (cop). Write the name of model specification in each case, analyze critically and test the stationarity of the series.

i.	Summery	statistics
----	---------	------------

SUM OC COP					
Variable	obs	Mean	Std. Dev.	Min	Max
OC COP	50 50	71.622 50.178	51.25576 32.00747	12.6 10.97	180.7 117.09

ii. Graphical Method

$1 \ge 30 = 30$

iii. The Unit Root Test

$Y_t = \rho Y_{t-1} + u_t \qquad -1 \le \rho \le 1$

regress OC L	1.0C, noconst	ant				
Source	SS	df	MS		Number of obs F(1, 48)	= 49 =84781.69
Model Residual	384839.413 217.880685	1 384 48 4.5	839.413 3918094		Prob > F R-squared Adj R-squared	= 0.0000 = 0.9994
Total	385057.293	49 785	8.31211		Root MSE	= 0.9994 = 2.1305
OC	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
0C L1.	1.044771	.0035881	291.17	0.000	1.037556	1.051985

 $\Delta Y_t = \delta Y_{t-1} + u_t$

reg d1.0C L1	L.OC					
Source	SS	df	MS		Number of obs	
Model Residual	145. 529143 202. 355083		45.529143 .30542729		Prob > F R-squared Adj R-squared	= 0.0000 = 0.4183
Total	347.884226	48 7	247 58803		Root MSE	= 2.075
D.OC	Coef.	Std. Eri	•. t	P> t	[95% Conf.	Interval]
OC L1.	. 0353301	.006076	8 5.81	0.000	.0231051	.0475551
_cons	.9788471	. 515464	5 1.90	0.064	- .0581337	2.015828

iv. DF Test

Sample	tr	IC [*]	t,	°*	to	:t*	F	t	F	;‡
size	1%	5%	1%	5%	1%	5%	1%	5%	1%	5%
25	-2.66	-1.95	-3.75	-3.00	-4.38	-3.60	10.61	7.24	8.21	5.68
50	-2.62	-1.95	-3.58	-2.93	-4.15	-3.50	9.31	6.73	7.02	5.13
100	-2.60	-1.95	-3.51	-2.89	-4.04	-3.45	8.73	6.49	6.50	4.88
250	-2.58	-1.95	-3.46	-2.88	-3.99	-3.43	8.43	6.34	6.22	4.75
500	-2.58	-1.95	-3.44	-2.87	-3.98	-3.42	8.34	6.30	6.15	4.71
∞	-2.58	-1.95	-3.43	-2.86	-3.96	-3.41	8.27	6.25	6.09	4.68

¹The critical *F* values are for the joint hypothesis that the constant and δ terms in (21.9.5) are simultaneously equal to zero. ¹The critical *F* values are for the joint hypothesis that the constant, trend, and δ terms in (21.9.5) are simultaneously equal to zero.

reg OC L1.00	, noconstant					
Source	SS	df	MS	Number of obs = F(1, 48) = Prob > F = R-squared = Adj R-squared =		
Model Residual	384839.413 217.880685	1 3848 48 4.5	839.413 3918094			= 0.0000 = 0.9994
Total	385057.293	49 7858	8. 31211			= 2.1305
OC	Coef.	Std. Err.	t	P> t	[95% Conf.]	[nterval]
0C L1.	1.044771	.0035881	291.17	0.000	1.037556	1.051985

reg OC t L1.	oc					
Source	SS	df	MS		Number of obs	
Model Residual	124987.867 187.950547		93.9333 8588145		F(2,46) Prob > F R-squared Adj R-squared	= 0.0000 = 0.9985
Total	125175.817	48 260	7.82952		Root MSE	= 2.0214
OC	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
t	.1409496	.0750684	1.88	0.067	- .0101552	. 2920543
OC L1.	. 9960063	.0217641	45.76	0.000	.9521975	1.039815
_cons	-276.7819	147.9335	-1.87	0.068	-574.5566	20.99285

v. DF using software

. dfuller OC,	noconstant re	egness				
Dickey-Fuller	test for unit	root		Numbe	er of obs	= 49
	Test Statistic	1% Crit Val	ical	rpolated [5% Crit Val		er LO% Critical Value
Z(t)	12.477	-2	. 622	-1	1.950	-1.610
D. 0C	Coef.	Std. Err.	t	P> t	[95% Conf	. Interval]
OC L1.	. 0447709	. 0035881	12.48	0.000	. 037 5564	. 0519853

. dfuller oc,	regress					
Dickey-Fuller	test for unit	root		Numb	er of obs	= 49
			Thter	nolated	Dickey-Fulle	r
	Test	1% Criti	cal	5% Cri		0% Critical
	Statistic	Valu			lue	Value
Z(t)	5.814	-3.	587	-	2.933	-2.601
MacKinnon app	roximate p-val	ue for Z(t)	= 1.0000)		
D.0C	Coef.	Std. Err.	t	P> t	[95% Conf	. Interval]
OC						
L1.	.0353301	.0060768	5.81	0.000	.0231051	.0475551
_cons	.9788471	. 5154645	1.90	0.064	0581337	2.015828
. dfuller oc,	trend regress	1				
Dickey-Fuller	test for unit	root		Numb	per of obs	= 49
			— Inte	rpolated	Dickey-Fulle	er
	Test	1% Crit	ical	. 5% Cri	itical 1	LO% Critical
	Statistic	Val	le	Va	alue	Value
Z(t)	-0.184	-4	.159	-	-3.504	-3.182
MacKinnon app	roximate p-val	ue for Z(t)	= 0.991	8		
D.OC	Coef.	Std. Err.	t	P> t	[95% Conf	F. Interval]
OC L1. _trend _cons	0039937 .1409496 .1840203	.0217641 .0750684 .6567739	-0.18 1.88 0.28	0.855 0.067 0.781	0478025 0101552 -1.137997	.0398151 .2920543 1.506038

vi. Phillips-Perron test for unit root

. pperron	oc,	noconstant r	egress				
Phillips-	Perro	on test for u	nit root			er of obs = /-West lags =	
		Test Statistic	1% Crit Val	ical	rpolated [5% Crit Val		% Critical Value
Z(rho) Z(t)		2.191 11.501		2.860 2.622	-	7.684 L.950	-5.492 -1.610
	0C	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
	ос L1.	1.044771	.0035881	291.17	0.000	1.037556	1.051985

. pperron OC,	regress								
Phillips-Perron test for unit root				Numb Newe					
	Test 1% Critical 5% Critical 10% Critical								
	Statistic	Value		Value		Value			
Z(rho) Z(t)	1.729 5.693	- 18.83 2 - 3.58 7		-13.268 -2.933		-10.680 -2.601			
MacKinnon approximate p-value for Z(t) = 1.0000									
ос	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]			
0C L1.	1.03533	.0060768	170.37	0.000	1.023105	1.047555			
_cons	.9788471	. 5154645	1.90	0.064	0581337	2.015828			

. pperron OC,	trend regress	5						
Phillips-Perron test for unit root				Numb Newe	49 3			
Test 1% Critical 5% Critical 10% Critical								
	Statistic	Value		Value		Value		
Z(rho) Z(t)	- 0.181 - 0.172	-25.572 -4.159		-19.724 -3.504		-16.752 -3.182		
MacKinnon approximate p-value for Z(t) = 0.9920								
ос	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]		
OC L1. _trend _cons	.9960063 .1409496 .1840203	.0217641 .0750684 .6567739	45.76 1.88 0.28	0.000 0.067 0.781	.9521975 0101552 -1.137997	1.039815 .2920543 1.506038		

vii. Augmented Dickey–Fuller (ADF) test

. dfuller OC, noconstant regress lags(5)								
Augmented Dickey-Fuller test for unit root			Numb	er of obs =	44			
	Test Statistic	1% Critical		rpolated Dickey-Fulle 5% Critical 1 Value		% Critical Value		
Z(t)	2.053	-2.630		-1.950		-1.608		
D.OC	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]		
OC L1. LD. L2D. L3D. L4D. L5D.	.0379253 .1913583 1835111 .2074853 0291233 0247098	.0184745 .1700517 .1909217 .1967523 .198624 .208248	2.05 1.13 -0.96 1.05 -0.15 -0.12	0.047 0.268 0.343 0.298 0.884 0.906	.0005256 1528934 5700119 1908188 4312165 4462859	.075325 .53561 .2029897 .6057895 .3729699 .3968662		