Roll No:-----

1 X20 = 20

UNIVERSITY OF PETROLEUM & ENERGY STUDIES DEHRADUN

End Semester Examination-April 2017

Program/course: MA Economics (Energy Economics)	Semester	: III
Subject: Business Modeling in Energy Sector	Max. Marks	: 100
Code : MEDE 822	Duration	: 3 Hrs
No. of page/s: 6		

Section-A

Q1. Attempt all the questions

- i. By studying the repeated cross section of observations, panel data are better suited to study the_____.
 - a. Static change b. Market change
 - c. Economic change d. dynamics of change
- ii. If the number of observations differs among panel members, we call such a panel an

a.	unbalanced panel	b.	balanced panel
с.	Unobserved panel	d.	Ungrouped panel

iii. In panel data econometrics we assume that the X 's are_____.

- a. Zero b. 0 to 1
- c. Nonstochastic d. 0 to -1
- iv. The composite error term ω_{it} consists of two components, ϵ_i , which is the crosssection, or individual-specific, error component, and u_{it} , which is the combined time series and cross-section error component.
 - a. True b. Partly true
 - c. False d. none of the above

v. In ECM, the intercept β_1 represents the mean value of all the ______ intercepts.

- a. Panel b. cross-sectional
- c. time d. non of the above

vi. The sum of the random effect values is always_____.

- a. 0
 b. 10

 c. 1
 d. 11
- vii. To decide between fixed or random effects model one can run a ______where the null hypothesis is that the preferred model is random effects vs. the alternative the fixed effects.
 - a. HP testb. BP Testc. LM testd. Hausman test

viii. The LM test helps you decide between a random effects regression and a simple OLS regression. a. Strongly agree b. Not correct c. very weakly agree d. can't be said Random effect model is known as _____. ix. b. GLS a. ECM c. WLS d. OLS In random effect model the individual differences in the intercept values of each x. company are reflected in the _____. b. Dependent variable a. Slope coefficient c. Intercept d. error term xi. Stochastic (Random) Process is the collection of random variables ordered in_____. b. Time a. Space c. Variables d. Panels If $Xt \sim I(d1)$ and $Yt \sim I(d2)$, then $Zt = (aXt + bYt) \sim$ _____, where d1 <xii. d2. b. *I*(*d*2) a. I(d1+d2)d. I(d1*d2)c. *I*(*d*1-*d*2) $R^2 > d$ is a good rule of thumb to suspect that the estimated regression is _____, as xiii. in the example above. b. Non-spurious a. Perfect fit c. Spurious d. Stationary

xiv. Which one is a random walk with drift model?

> a. $Y_t = \beta_1 + \beta_2 t + \delta Y_{t-1} + u_t$ b. $Y_t = \beta_1 + \delta Y_{t-1} + u_t$ c. $Y_t = \delta Y_{t-1} + u_t$ d. $Y_t = \beta_2 t + \delta Y_{t-1}$

In conducting the DF test it is assumed that the error terms *u_t* are_____ XV.

- a. Fixed b. Uncorrelated
- c. Zero d. correlated
- In which of the following models, the intercept varies across subjects but remains xvi. time-invariant?
 - a. Pooled OLS model b. Fixed effect least-square dummy variable model c. Random effect model d. None of the above

In which of the following models, the intercept varies across subjects and over time? xvii.

- a. Pooled OLS model b. Fixed effect least-square dummy variable model c. Random effect model
 - d. None of the above

xviii. The H_0 , we test using Hausman statistics is that

- a. FEM and REM estimators differ substantially
- c. FEM and REM estimators do not differ substantially
- b. FEM and REM estimators are equal to zero
- d. FEM and REM estimators are not equal to zero

- Under which of the following conditions, we find REM estimators to be more xix. efficient than FEM estimators, assuming that all underlying assumptions are satisfied?
 - a. When N is large and T is small b. When N is small and T is large
 - c. When N is same as T d. In all case

XX. Pooled OLS regression model is also known as

- a. Constant coefficient model b. Constant variance model
- d. None of the above c. Constant intercept model

Section-B

Answer any four questions

- Q2. What is a white noise process? Explain.
- Q3. What is nonstationary time series? Write down all three models of nonstationary time series.
- Q4. What is unit root stochastic process? Explain.
- Q5. What do you mean by integrated stochastic process? Explain.
- Q6. What is spurious regression? Explain.

Section C

Answer any two questions

- Q7. Explain the procedure of fixed effect model with all coefficients vary across individuals.
- Q8. Nominal GDP of given eight country is estimated using the following oil prices and oil consumption.

GDP	WTI	BRENT	OIL CONSUMPTION
(Current US\$)	(\$/bbl)	(\$/bbL)	(thoushand barrels\day)
Y1it	X2it	X3it	X4it

 $2 \times 15 = 30$

5 X4 = 20

Variable	Obs	Mean	Std. Dev.	Min	Max
year	152	2006	5.495332	1997	2015
y1it	152	1.88e+12	2.08e+12	8.57e+10	1.10e+13
x2it	152	56.48316	29.70811	14.35	99.56
x3it	152	58.37737	34.03541	12.72	111.97
x4it	152	3257.204	2136.869	649	11968

COUNTRY	Freq.	Percent	Cum.
BRAZIL	19	12.50	12.50
CANADA	19	12.50	25.00
CHINA	19	12.50	37.50
INDIA	19	12.50	50.00
JAPAN	19	12.50	62.50
RUSSIA	19	12.50	75.00
S. KOREA	19	12.50	87.50
SINGAPORE	19	12.50	100.00
Total	152	100.00	

a) Write which model of panel data analysis produce following result.

. xi: regress i.country	lny1it lnx2i _Icountry				country==BRAZ	IL omitted)
Source	SS	df	MS		Number of obs	
Model Residual	180.948455 6.53713381		. 0948455 46362651		F(10, 141) Prob > F R-squared Adj R-squared	= 0.0000 = 0.9651
Total	187.485589	151 1.	24162642		Root MSE	= .21532
lny1it	Coef.	Std. Err	. t	P> t	[95% Conf.	Interval]
lnx2it lnx3it lnx4it _Icountry_2 _Icountry_3 _Icountry_4 _Icountry_5 _Icountry_6 _Icountry_7 _Icountry_8 _Cons	-1.016974 1.372232 1.414563 .0786953 5530455 4430084 .3767589 6023298 2978932 6240079 15.41411	. 3914765 . 3596279 . 1191883 . 0703227 . 1462079 . 0724259 . 1120878 . 0722013 . 0699049 . 1367143 . 8978561	3.82 11.87 1.12 -3.78 -6.12 3.36 -8.34 -4.26 -4.56	0.010 0.000 0.265 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	-1.790896 .661272 1.178936 0603278 8420886 5861895 .1551689 7450668 4360904 8942826 13.63911	2430519 2.083192 1.65019 .2177184 2640024 2998273 .5983488 4595929 1596959 3537331 17.18911

b) Interpret the above results.

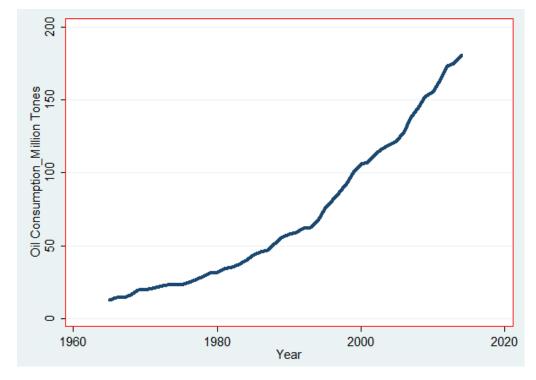
Q9. In input-output model distinguish between:

- a) Transaction Matrix
- b) Technology Matrix
- c) Leontief Matrix

Section D

- Q10. Answer only one question $1 \times 30 = 30$
 - I. What is input-output analysis? Briefly explain with example the steps involved in inputoutput analysis.

OR


II. Summery statistics and stationarity test results of oil consumption (OC) are given below.

Interpret the given results with justification.

a) Summary Statistics

Variable	Obs	Mean	Std. Dev.	Min	Мах
year	50	1989.5	14.57738	1965	2014
OC	50	71.622	51.25576	12.6	180.7

b) Results of Stationarity tests: Graphical Method

c) Dickey-Fuller test for Unit Root

. dfuller OC,	trend regress	5				
Dickey-Fuller	test for unit	root		Numb	er of obs =	- 49
	Test Statistic	1% Crit Valu	ical	5% Cri	Dickey-Fuller tical 10 lue	% Critical Value
Z(t)	-0.184	-4	.159	-	3.504	-3.182
MacKinnon app	roximate p-val	lue for Z(t)	= 0.991	В		
D. OC	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
OC L1. _trend _cons	0039937 .1409496 .1840203	. 0217641 . 0750684 . 6567739	-0.18 1.88 0.28	0.855 0.067 0.781	0478025 0101552 -1.137997	.0398151 .2920543 1.506038

d) Phillips-Perron test for unit root

. pperron OC,	trend regress	5				
Phillips-Perro	on test for un	nit root			er of obs = y-West lags =	
	Test Statistic	1% Crit Valu	ical	. 5% Cri	Dickey-Fuller tical 10 lue	% Critical Value
Z(rho) Z(t)	-0.181 -0.172		. 572 . 159		9.724 3.504	- 16.752 -3.182
MacKinnon appr	roximate p-va	lue for Z(t)	= 0.9920	D		
ос	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
OC L1. _trend _cons	.9960063 .1409496 .1840203	.0217641 .0750684 .6567739	45.76 1.88 0.28	0.000 0.067 0.781	.9521975 0101552 -1.137997	1.039815 .2920543 1.506038

e) Augmented Dickey–Fuller (ADF) test for Unit Root

·	OC, trend regre	3				
Augmented	Dickey-Fuller t	est for unit	root	Numb	er of obs =	= 4 4
			— Inte	rpolated	Dickey-Fuller	
	Test	1% Crit	ical	5% Cri	tical 10	% Critical
	Statistic	Val	ue	Va	lue	Value
Z(t)	-0.502	-4	. 205	-	3. 524	-3.194
Mackinnon	approximate p-v	alue for Z(t)	= 0.983	4		
					[95% conf.	Intervall
D. OC	Coef.		= 0.983		[95% Conf.	Interval]
D.OC		Std. Err.			[95% Conf.	Interval]
D.OC	Coef.	Std. Err.	t	P> t	-	
D.OC L L L2	Coef. OC 10155647 D0792706 D2181164	Std. Err. .0310128 .1664868 .1815841	t -0.50 0.48 -1.20	P> t 0.619 0.637 0.238	0784616 2583804 5863859	.0473321 .4169216 .1501532
D. OC L L L2 L3	Coef. OC 10155647 D0792706 D2181164 D1232392	Std. Err. .0310128 .1664868 .1815841 .1893026	t -0.50 0.48 -1.20 0.65	P> t 0.619 0.637 0.238 0.519	0784616 2583804 5863859 2606842	.0473321 .4169216 .1501532 .5071627
D. OC L L2 L3 L4	Coef. OC 10155647 D0792706 D2181164 D1232392 D0834787	Std. Err. . 0310128 . 1664868 . 1815841 . 1893026 . 1890653	t -0.50 0.48 -1.20 0.65 -0.44	P> t 0.619 0.637 0.238 0.519 0.661	0784616 2583804 5863859 2606842 4669208	.0473321 .4169216 .1501532 .5071627 .2999635
D. OC L L L2 L3	Coef. OC 10155647 D0792706 D2181164 D1232392 D0834787 D0633032	Std. Err. . 0310128 . 1664868 . 1815841 . 1893026 . 1890653 . 1980766	t -0.50 0.48 -1.20 0.65	P> t 0.619 0.637 0.238 0.519	0784616 2583804 5863859 2606842	.0473321 .4169216 .1501532 .5071627