Roll	No:	
------	-----	--

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES

End-Term Examination, May 2019

Program/course: MBA-General (Finance)	Semester	: IV
Subject: Financial Econometrics	Max. Marks	: 100
Code : MBCF863	Duration	: 3 Hrs
No. of page/s: 5		

Section-A

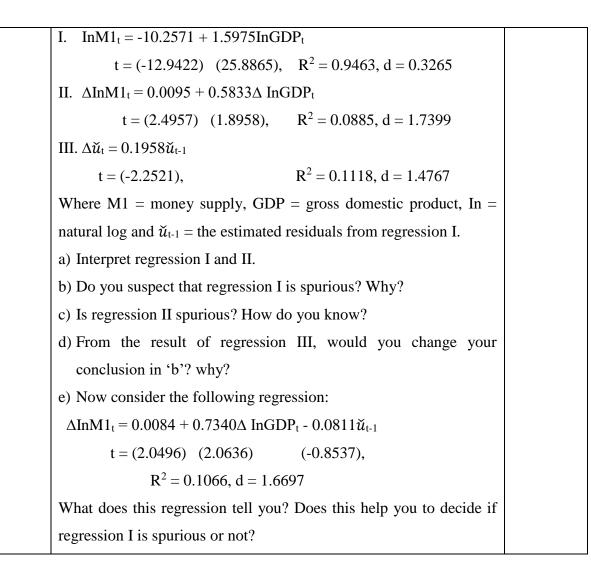
All the questions are compulsory in this section. [10*2=20]

Q.No.	Questions	CO
1.	In a regression analysis we are concerned with the study of-	CO1
	(a) mean value of X population.	
	(b) mean value of Y population.	
	(c) dependence of Y variable on one or more explanatory variables.	
	(d) interdependence of X and Y variables.	
2.	In the simple linear regression model, the regression slope-	CO1
	(a) indicates by how many percent Y increases, given a one percent increase in X.	
	(b) when multiplied with the explanatory variable will give you the predicted Y.	
	(c) indicates by how many units Y increases, given a one unit increase in X.	
	(d) represents the elasticity of Y on X.	
3.	The Jarque –Bera test is-	CO1
	(a) model specification test.	
	(b) residual normality test.	
	(c) test of unbiasedness of estimators.	
	(d) test of goodness of fit for the model.	
4.	Coefficient of determination measures-	CO1
	(a) the correlation between X and Y.	
	(b) fit of the functional form.	
	(c) the residual sum of squares.	
	(d) the explained sum of squares.	
5.	Heteroscedasticity means that-	CO1
	(a) all variables cannot be assumed to be homogeneous.	
	(b) the variance of the error term is not constant.	
	(c) the observed units have no relation.	
	(d) the X and Y are not correlated.	
6.	A non-stationary time series is one with-	CO1
	(a) time-varying mean.	

	(b) time-varying variance.	
	(c) both (a) and (b).	
	(d) all of the above.	
7.	By rejecting the H ₀ , we mean that our finding is-	CO1
	(a) statistically insignificant.	
	(b) statistically significant.	
	(c) nothing to do with significance.	
	(d) P value is not useful.	
8.	Testing for cointegration is given by-	CO1
	(a) Dickey-Fuller test.	
	(b) Engle-Granger test.	
	(c) Error Correction Mechanism.	
	(d) F-test.	
9.	A non-stationary series that becomes stationary on second differencing is-	CO1
	(a) integrated of order 0.	
	(b) integrated of order 1.	
	(c) integrated of order 2.	
	(d) integrated of order 3.	
10.	Estimation using OLS on autocorrelated data results in the parameters being	CO1
	estimated to be-	
	(a) baised.	
	(b) inconsistent.	
	(c) asymptotically normally distributed.	
	(d) inefficient.	

Section-B

[5*10=50]


Q.No.	Questions	СО
11.	Suppose you were to develop a econometric model on rate of	CO1,CO2,
	return of a project initiated by a real sector firm. What	CO3
	variables would you consider in developing such a model and	
	why?	
12.	What is the error correction mechanism (ECM)? What is its	CO1,CO2
	relation with cointegration?	
13.	Explain the methodology of econometrics with the help of an	CO1,CO2
	example.	
14.	The following regression results were obtained between	CO1,CO2,CO3

	nominal exchange rate and relative prices for the period from	
	2000 to 20144-	
	$\check{Y}_t = 6.682 - 4.318 X_t$, $R^2 = 0.528$	
	Se = (1.22) (1.33)	
	Where $Y = exchange$ rate of the Indian rupees to the US Dollar	
	and $X = ratio$ of US consumer price index to the Indian	
	consumer price index.	
	(a) Interpret this regression. How would you interpret R^2 ?	
	(b) Does the negative value of Xt make economic sense? What	
	is the underlying economic theory?	
	(c) Calculate t-value for coefficient of X_t and find whether is it	
	significant at 5% or not.	
15.	For a sample of 210 firms, a research firm obtained the	CO1,CO2,CO3
	following regression results	
	Log(salary) = 4.32 + 0.280log(sales) + 0.0174roe + 0.00024ros	
	$Se = (0.32) (0.035) \qquad (0.0041) (0.00054)$	
	$R^2 = 0.283$	
	Where salary = salary of CEO, sales = annual firm sales, roe =	
	return on equity in percent, ros = return on firm's stock and	
	figures in the parentheses are the estimated errors.	
	(a) Interpret the preceding regression results.	
	(b) Which of the coefficient are individually statistically	
	significant at the 5 percent level?	
	(c) Can you interpret the coefficients of 'roe' and 'ros' as	
	elasticity coefficient? Why or why not?	

Section-C Attempt the given question.

[1*30=30]

Q.No.	Questions	СО
16.	From the data for the period 1971-I to 1988-IV quarter for India, the	CO1,CO2,
	following regression results were obtained-	CO3,CO4

Roll No: -----

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES

End-Term Examination, May 2019

Program/course: MBA-General (Finance)	Semester	: IV
Subject: Financial Econometrics	Max. Marks	: 100
Code : MBCF863	Duration	: 3 Hrs
No. of page/s: 5		

Section-A

All the questions are compulsory in this section. [10*2=20]

Q.No.	Questions	CO
1.	When our findings is statistically significant it means-	CO1
	(a) the 't' value and 'p' value are not equal.	
	(b) standard error is very high.	
	(c) the estimated value is significantly different from the hypothesized value.	
	(d) the estimated value is not significantly different from the hypothesized value.	001
2.	In the simple linear regression model, the regression slope-	CO1
	(a) indicates by how many percent Y increases, given a one percent increase in X.	
	(b) when multiplied with the explanatory variable will give you the predicted Y.	
	(c) indicates by how many units Y increases, given a one unit increase in X.	
	(d) represents the elasticity of Y on X.	
3.	The Jarque –Bera test is-	CO1
	(a) model specification test.	
	(b) residual normality test.	
	(c) test of unbiasedness of estimators.	
	(d) test of goodness of fit for the model.	
4.	The fitted regression equation is given by $Y = -12 + 0.5X$. What is the value of	CO1
	residual at the point $X = 50$, $Y = 70$?	
	(a) 57.	
	(b) -57 .	
	(c) 0. (d) 33.	
5.	Heteroscedasticity means that-	CO1
5.	(e) all variables cannot be assumed to be homogeneous.	001
	(f) the variance of the error term is not constant.	
	(g) the observed units have no relation.	
	(h) the X and Y are not correlated.	<u>CO1</u>
6.	A non-stationary time series is one with-	CO1

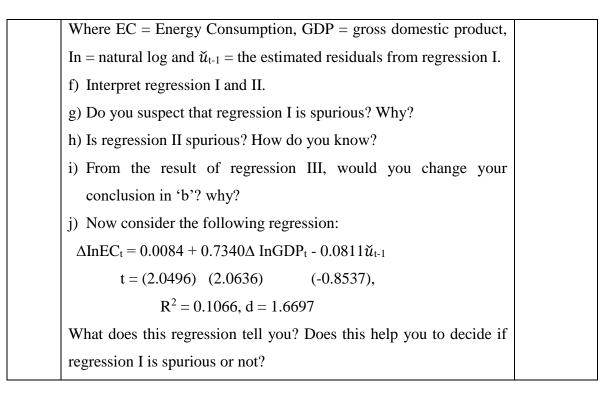
	(a) time-varying mean.	
	(b) time-varying variance.	
	(c) both (a) and (b).	
	(d) all of the above.	
7.	Multicollinearity can be detected if the regression function has-	CO1
	(a) high \mathbb{R}^2 with all coefficients having t-ratios.	
	(b) may not have high R2 but all coefficients have high t-ratios.	
	(c) high R2 with very few or no coefficients having high t-ratios.	
	(d) low R2 with almost all coefficients having low t-ratios.	
8.	Testing for cointegration is given by-	CO1
	(e) Dickey-Fuller test.	
	(f) Engle-Granger test.	
	(g) Error Correction Mechanism.	
	(h) F-test.	
9.	A non-stationary series that becomes stationary on second differencing is-	CO1
	(e) integrated of order 0.	
	(f) integrated of order 1.	
	(g) integrated of order 2.	
	(h) integrated of order 3.	
10.	Estimation using OLS on autocorrelated data results in the parameters being	CO1
	estimated to be-	
	(a) baised.	
	(b) inconsistent.	
	(c) asymptotically normally distributed.	
	(d) inefficient.	

Section-B

[5*10=50]

Q.No.	Questions	СО
11.	What is the role of stochastic error term u_i in regression	CO1,CO2,
	analysis? What is the difference between the stochastic error	CO3
	term and the residual, \check{u}_i ?	
12.	Discuss alternative methods of to check the problem of	CO1,CO2
	heteroscedasticity.	
13.	Explain the methodology of econometrics with the help of an	CO1,CO2
	example.	
14.	Consider the following regression output;	CO1,CO2,CO3

Attempt all the questions.


	$\check{Y}_{t} = 0.2033 + 0.6560 X_{t}$, $R^{2} = 0.397$	
	Se = (1.22) (1.33)	
	Where Y = Labour force participation rate (LFPR) of women	
	in 1972 and $X = LFPR$ of women in 1968.	
	(c) Interpret this regression. How would you interpret R^2 ?	
	(b) Calculate t-value for coefficient of X_t and find whether is it	
	significant at 5% or not.	
15.	A research institution obtained the following regression results:	CO1,CO2,CO3
	Log(FDI) = 4.32 + 0.280 log(GDP) + 0.0174TO - 0.0024IR	
	$Se = (0.32) (0.035) \qquad (0.0041) (0.00054)$	
	$R^2 = 0.283$	
	Where FDI = Foreign Direct Investment, GDP = Gross	
	Domestic Product, TO = Trade Openness, IR = rate of inflation	
	and figures in the parentheses are the estimated errors.	
	(d) Interpret the preceding regression results.	
	(e) Which of the coefficient are individually statistically	
	significant at the 5 percent level?	
	(f) Can you interpret the coefficients of 'TO' and 'IR' as	
	elasticity coefficient? Why or why not?	

Section-C

[1*30=30]

Q.No.	Questions	СО
16.	From the data for the period 1971-I to 1988-IV quarter for India, the	CO1,CO2,
	following regression results were obtained-	CO3,CO4
	IV. $InEC_t = -10.2571 + 1.5975InGDP_t$	
	$t = (-12.9422)$ (25.8865), $R^2 = 0.9463, d = 0.3265$	
	V. $\Delta InEC_t = 0.0095 + 0.5833\Delta InGDP_t$	
	$t = (2.4957)$ (1.8958), $R^2 = 0.0885, d = 1.7399$	
	VI. $\Delta \breve{u}_t = 0.1958 \breve{u}_{t-1}$	
	t = (-2.2521), $R^2 = 0.1118, d = 1.4767$	

Attempt the given question.

