Name:

Enrolment No:

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES End Semester Examination, May 2019

Course: Supply Chain Network Design, Modelling & Simulation (LSCM 8005) **Semester:** IV **Programme: MBA Logistics & Supply Chain Management** Time: 03 hrs. **Instructions: Prof. Balaram Swamy J.** Max. Marks: 100 **SECTION-A** Marks 02x10 = 20S. No. Marks CO Q 01 Choose the **most suitable** option from the **alternates** given below. Forecasts are never correct, but every organization and industry does forecasts because a They want to know, how much wrong is their forecast? b They endeavor to reduce to forecasting error CO 01 02 CO 03 They plan the future with wrong forecasts; something is better than nothing d None of the above Ш On the time scale, forecasts can be grouped into two buckets a Long-term and Short-term b Long-term and Mid-and-Short-term CO 01 02 c Long-term and Mid-term CO 03 d Mid-term and Short-term Long-term forecasts are done for the industry to help take decisions such as Ш To understand industry growth rate b To estimate and calculate growth in company market share CO 01 02 С To take investment decisions, if any CO 03 d All the above Long-term forecasts are used to take strategic decisions, which are effected by changing Product and Technology Life Cycle b Consumer Behavior and Competition CO₀₁ Global Regional and Local Trends 02 CO 03 d All the above

In late 90s and early 2000, Kodak, which had 170,000 employees and sold 85% of photo paper worldwide, business model, disappeared and they went bankrupt. It was due to

a Top management was complacent

٧	Identify and disallow few large errors over many small errors is done effectively by		
	a MSE		
	b MAPE		CO 01
	c MAD	02	CO 03
	d RMSE		
VI	Convey in simple and easy to understand the error is		
	a MSE		
	b MAPE		CO 01
	c MAD	02	CO 03
	d RMSE		
VII	Repetitive peaks in Forecasting Parameter over a period of time consists of		
	a Variations which cannot be attributed to any known reason		
	b Basic linear or non-linear and positive or negative growth		
	c Seasonality and/or Cyclic Effect over a period of time	02	CO 01
	d All the above		CO 03
VIII	In late 90s and early 2000, Kodak, which had 170,000 employees and sold 85%	of photo par	oer
	worldwide, business model, disappeared and they went bankrupt. It was due to		
	a Top management was complacent		
	b Top management was myopic	02	CO 01 CO 03
	c Only "a" above		CO 03
	d Both "a" and "b" above		
& .0	MAAReogografaseinsyezroog,4k.8dak).សាក់ដែកកង្លច់s170,000 employees and sold 85% c	of photo pape	er
5	worldwide, business model, disappeared and they went bankrupt. It was due to		
	b 48Top management was complacent	0.2	CO 01
	b 8Top management was myopic	02	CO 03
	d g7Only "a" above Both answers are right ;Give marks for either	or both	
	d Only "b" above		
Х	MSE for forecasting errors 4, 8, -10, 6, -12, 8, is		
Q.0 6	₽ong ferm forecasts will fail by looking in the past; one should look at		
Ū	b 78 a The future and estimating the changes	0.2	CO 01
	c 65 b Disruptive technology and its effect on the company product-service	02	CO 03
	d 71 c Both the above		
	d None of the above		
Ш	Long-term forecasts are done for the industry to help take decisions such as		
Q.0	a To understand industry growth rate		
7	Forecasting Techniques will be different at various stages of Product Life Cycle To estimate and calculate growth in company market share		

Ta take investment decisions, if any

02x15 = 30 Marks

CO 01

CO 02

15

Q 02	а	What is Mathematical Modelling; give example.	05	CO 01
	b	Non-stationary Time Series data, has four components; what are they?	05	CO 01
	С	What is "a" in standard Linear Programing Problem notation; give examples	05	CO 01
	d	What is "b" in standard Linear Programing Problem notation; give examples	05	CO 01
	e	What is "c" in standard Linear Programing Problem notation; give examples	05	CO 01

SECTION-C

Q 03 A firm has two factories that ship to three regional warehouses; the cost of transportation of one unit of the product from the factory to the warehouses and the demand of the market served by the warehouses are given below. Factory F_2 is old; the variable manufacturing cost is Rs. 20 per unit here, whereas Factory F_1 is modern and produces at reduced variable cost, Rs. 10 per unit. The monthly capacity of F_1 and F_2 are 400 and 250 units respectively. Formulate it as a Linear Programming Problem

From Factory	Unit Cost of Transportation to Warehouses			
,	W_1	W ₂	W ₃	
F ₁	2	2	5	
F ₂	4	2	3	
Warehouse Requirement	200	100	350	

Q 04 In terms of Process Analysis what is Process Boundaries, SIPOC, Activities, Actors and Resources. Discuss this with two examples (01) everyday routine process and, (02) CO 02 warehousing process from Goods-in to Goods-out.

		SECTION-D	Marks	30
Q 05	With re		CO 01	
	a.	Suggest supply chain solutions to Menon's problem; consider post GST scenario?	15	CO 02
	b.	Forecast the sale for the first quarter of 2018-19.	15	

Mahindra & Mahindra Ltd. (Farms' Division)

On the morning of February 3, 2012, Vinod Menon, Deputy General Manager of sales at Mahindra & Mahindra, Ltd., Farm Division (MMFD), received a telephone call from a dealer. The dealer was complaining about the irregular and short supply of tractors from the company stockyard. Menon was frustrated with the way that the dealer was speaking to him but was not able to address the issue during their conversation. Instead, he tried to pacify the dealer with one excuse or another, but the dealer remained upset.

The conversation was becoming more heated with every passing second, and Menon was clearly irritated by the straight questions that were being asked by the dealer. Deep inside, he knew that the dealer was speaking logically, but he did not have the right answers. He finally ended the call after assuring the dealer that he would get the problem resolved. He was also not happy about the frequent complaints from other dealers regarding the short supply of tractors.

Menon had worked for MMFD for over a decade. Initially, he received dealer complaints of irregular tractor supplies only during the peak season, but it had now become a year-round problem. The company was currently operating four manufacturing plants in India, and Menon wondered why it was still unable to provide an adequate supply of tractors to its dealers.

In 2017, the domestic tractor market in India, although geographically fragmented, was the largest in the world, and it was still growing. The industry was very competitive with 16 companies manufacturing and selling tractors in the country, including the foreign players Kubota, John Deere, New Holland Agriculture, Same Deutz-Fahr and Massey Ferguson. The top four companies contributed more than 80 per cent of the sales in the domestic market. There were a number of tractor models available to satisfy customer preferences and demand.

The primary demand for tractors came from agriculture, and the secondary demand came from other uses, such as haulage, construction, etc. The demand for tractors followed a seasonal pattern; the peak seasons were April through June and September through November.

MMFD'S BUSINESS MODEL

MMFD had more than 800 dealers selling its tractors to customers across India. The tractors were manufactured at one of four plants located at Mumbai, Jaipur, Rudrapur and Nagpur and were then transported by road to one of the company's stockyards, which were located in each state. From the stockyards, the tractors were billed to dealers as per their needs and availability. This helped the company avoid paying a central sales tax of 4 per cent on the tractor price (the average tractor price was US\$9,044; one India Rupee is 0.0161 US\$).

MMFD had 26 sales offices located across India. Their main role was to coordinate supplies between the dealers and the company. They provided a rolling tractor demand forecast for the current month plus two months in the future. This forecast was used to manufacture tractors and to enable placing parts supply orders in advance. The manufacturing plants supplied tractors to the stockyards per the current monthly forecast. The tractor availability at the stockyards was a key concern given the demand from dealers according to the sales season: tractor sales were seasonal with a minus 20 per cent to plus 40 per cent change . MMFD had approximately 197 tractor models, the top 25 of which accounted for 73 per cent of sales; another 25 models accounted for the next 16 per cent of sales, and the remaining 147 models accounted for 11 per cent of sales (see Exhibit 02). The present dealer stock had an accuracy level of 63 per cent for fulfilling sales demands.

MMFD management was sensitive to monthly sales and market shares since this information was reported in the media and impacted the company's share price. This led to frequent changes in end-of-the- month manufacturing and supply to stockyards.

THE FORECASTING AND SUPPLY CHAIN DILEMMA

Dealers were carrying tractor stock equal to 40 days of their annual sales, and an additional 20 days of stock were held at company stockyards. Thus, there were 60 days of finished goods waiting for customers, who were willing to wait for five to 15 days to receive a new tractor. The production of tractors was driven by material availability as well as changing customer demands.

Menon did not want to lose sales; therefore, to cater to market demand, he frequently did mid-month revisions in the forecast plan and inter-stockyard transfer of tractors in order to meet dealer demand (stockyard to stockyard transfers of tractors accounted for 6.7 per cent of the annual sales volume with an average transportation cost of US\$145 per tractor). But even then, dealers were often forced to sell alternate models at discounted prices to customers due to the lack of availability of the desired model. This was the main reason for the high level of dealer dissatisfaction.

In the next month's sales planning meeting, Menon decided to talk to his superiors about his stress and the dealers' low satisfaction level due to the improper supply of tractors, but he wanted to go into the meeting with a solution to the problem instead of just a complaint.

EXHIBIT 01: MONTHLY SALES

(in units of Tractors)

						(in units c	f Tractors)
MONTHS	2011-12	2012-13	2013-14	2014-15	2015-16	2016-17	2017-18
April	8,029	10,905	9,682	10,684	11,282	15,697	17,740
May	8,650	9,842	9,052	11,693	12,870	16,653	17,952
June	9,960	12,259	11,477	14,439	17,811	15,411	21,552
July	7,152	9,285	8,242	9,081	12,128	13,534	15,699
August	7,322	7,950	7,674	9,781	10,161	12,454	15,059
September	9,239	11,482	10,339	10,307	16,359	16,300	23,508
October	14,123	15,817	13,919	14,800	17,796	23,378	30,519
November	9,566	10,288	10,531	7,960	11,604	16,975	16,175
December	7,341	8,743	8,435	6,858	11,517	15,135	15,315
January	9,404	10,419	9,750	9,438	15,925	19,430	17,950
February	8,613	8,801	8,477	8,487	13,532	17,534	13,534
March	9,425	8,631	9,814	10,609	14,648	17,822	15,054

EXHIBIT 02: PARETO ANALYSIS OF MAHENDRA TRACTOR MODELS

Tractor Models	Annual Sales	Percentage	Tractor Models	Annual Sales	Percentage
1–25	159,959	72.69%	51–100	23,524	10.69%
26–50	36,111	16.41%	101–197	463	00.21%

Name:

Enrolment No:

Q. 05

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES End Semester Examination, May 2019

		End Semester Examination, May 2019		
Programme: 1		Supply Chain Network Design, Modelling & Simulation (LSCM 8005) MBA Logistics & Supply Chain Management	Semester: Time:	IV 03 hrs.
		Prof. Balaram Swamy J.	Max. Marks	s: 100
		SECTION-A	Marks 02x	x10=20
S. No.			Marks	CO
Q 01	Choo	se the most suitable option from the alternates given below.		
	ı	For Forecast of Dependent Demand		
		a Bill of Material (BOM) is used		
		b Material Requirement Planning is done		CO 01
		c Both "a" and "b" are correct	02	CO 03
		d Both "a" and "b" are incorrect		
	П	Cyclic Effect on Time Series data is		
		a Over a longer period than that in Seasonal Effect		
		b It is due to inflation followed by recession in the industry		CO 01
		c Both of the above	02	CO 03
		d None of the above		
	Ш	Mid-and-Short-term Forecasts are done during		
		a Introduction Stage of PLC		
		b Growth Stage of PLC		CO 01
		c Stable Stage of PLC	02	CO 01 CO 03
		d Decline Stage of PLC		
	IV	Long-term forecasts are used to take strategic decisions, which are effected by cha	nging · ·	•
		a Product and Technology Life Cycle		
		b Consumer Behavior and Competition		·
		c Global Regional and Local Trends	02	CO 01 CO 03
		d All the above		CO 03
	0	In late 00e and early 2000 Kedely which had 170 000 amplested and all 250	af mhata w	

In late 90s and early 2000, Kodak, which had 170,000 employees and sold 85% of photo paper

Both answers are right ;Give marks for either or both

worldwide, business model, disappeared and they went bankrupt. It was due to

a Top management was complacent

b Top management was myopic

c Only "a" above

d Only "h" above

V	Time Series data may contain the following components		
	a Trend of the Forecasted Parameter		
	b Seasonality and Cyclic Effect		CO 01
	c Random Variation	02	CO 01
	d All the above		
VI	Long-term forecasts will fail by looking in the past; one should look at future by lo	ooking	
	a The future and estimating the changes		
	b Disruptive technology and its effect on the company product-service		CO 01
	c Both the above	02	CO 03
	d None of the above		
VII	Repetitive peaks in Forecasting Parameter over a period of time consists of		
	a Variations which cannot be attributed to any known reason		
	b Basic linear or non-linear and positive or negative growth		
	c Seasonality and/or Cyclic Effect over a period of time	02	CO 01
	d All the above	02	CO 03
	d All the above		
VIII	Trend of the Forecasted Parameter consists of		
	a Repetitive peaks and valleys over a period of time		
	b Basic linear or non-linear and positive or negative growth		~~ ~4
	c Variations which cannot be attributed to any known reason	02	CO 01 CO 03
	d All the above		CO 03
Q.0 J X	In late 90s and early 2000, Kodak, which had 170,000 employees and sold 85% Worldwide, regenties ନାଫେଣ, de sappe fred and they went bankrupt. It was due to	of photo pape	er
	a 94Top management was complacent		
	8 8Top management was myopic	02	CO 01
	c 880nly "a" above Both answers are right ;Give marks for either	er or both	CO 03
	₽7Only "b" above		
Q .0	MSE for forecasting errors 4, 8, -10, 6, -12, 8, is Long-term forecasts will fail by looking in the past; one should look at a 85		
	b 78 The future and estimating the changes		~~ ~4
	b Disruptive technology and its effect on the company product-service	02	CO 01 CO 03
	5 ₁ Both the above		CO 03
	d None of the above		
Ш	Long-term forecasts are done for the industry to help take decisions such as		
Q.0	हिंore6astinerरeshminnues willshewliffeeet at various stages of Product Life Cycle		
7	Τρ estimate and calculate growth in company market share		
	c To take investment decisions, if any		
	D raise		

(DO ANY FOUR OF THE FIVE QUESTIONS: Q 02a, Q 02b, Q 02c, Q 02d, Q 02e)

Q 02	а	What is Market Potential and Market Size; how are they connected?	05	CO 01
	b	What is Industry Sales and Company Sales; how are they connected?	05	CO 01
	С	What are True-isms in the context of Forecasting in a Supply Chain; give examples	05	CO 01
	d	What are the three kinds of decisions can be taken in modelling; give examples	05	CO 01
	е	What are two types of Modelling Solution procedure/approaches; give examples	05	CO 01

SECTION-C

02x15 = 30 Marks

CO 01 CO 02

15

Q 03 A firm has two factories that ship to three regional warehouses; the cost of transportation of one unit of the product from the factory to the warehouses and the demand of the market served by the warehouses are given below. Factory F_2 is old; the variable manufacturing cost is Rs. 20 per unit here, whereas Factory F_1 is modern and produces at reduced variable cost, Rs. 10 per unit. The monthly capacity of F_1 and F_2 are 400 and 250 units respectively. Formulate it as a Linear Programming Problem

From Factory	Unit Cost of Transportation to Warehouses				
	W ₁	W_2	W ₃		
F ₁	2	2	5		
F ₂	4	2	3		
Warehouse Requirement	350	200	100		

Q 04 In terms of Process Analysis what is Process Boundaries, SIPOC, Activities, Actors and Resources. Discuss this with two examples (01) everyday routine process and, (02) Warehousing process from Goods-in to Goods-out.

		SECTION-D	Marks	30
Q 05	With r	CC		
	a.	Suggest supply chain solutions to Menon's problem; consider post GST scenario?	15	CO 02
	b.	Forecast the sale for the first quarter of 2018-19.	15	

MAHINDRA & MAHINDRA LTD. (FARMS' DIVISION)

On the morning of February 3, 2012, Vinod Menon, Deputy General Manager of sales at Mahindra & Mahindra, Ltd., Farm Division (MMFD), received a telephone call from a dealer. The dealer was complaining about the irregular and short supply of tractors from the company stockyard. Menon was frustrated with the way that the dealer was speaking to him but was not able to address the issue during their conversation. Instead, he tried to pacify the dealer with one excuse or another, but the dealer remained upset.

The conversation was becoming more heated with every passing second, and Menon was clearly irritated by the straight questions that were being asked by the dealer. Deep inside, he knew that the dealer was speaking logically, but he did not have the right answers. He finally ended the call after assuring the dealer that he would get the problem resolved. He was also not happy about the frequent complaints from other dealers regarding the short supply of tractors.

Menon had worked for MMFD for over a decade. Initially, he received dealer complaints of irregular tractor supplies only during the peak season, but it had now become a year-round problem. The company was currently operating four manufacturing plants in India, and Menon wondered why it was still unable to provide an adequate supply of tractors to its dealers.

In 2017, the domestic tractor market in India, although geographically fragmented, was the largest in the world, and it was still growing. The industry was very competitive with 16 companies manufacturing and selling tractors in the country, including the foreign players Kubota, John Deere, New Holland Agriculture, Same Deutz-Fahr and Massey Ferguson. The top four companies contributed more than 80 per cent of the sales in the domestic market. There were a number of tractor models available to satisfy customer preferences and demand.

The primary demand for tractors came from agriculture, and the secondary demand came from other uses, such as haulage, construction, etc. The demand for tractors followed a seasonal pattern; the peak seasons were April through June and September through November.

MMFD'S BUSINESS MODEL

MMFD had more than 800 dealers selling its tractors to customers across India. The tractors were manufactured at one of four plants located at Mumbai, Jaipur, Rudrapur and Nagpur and were then transported by road to one of the company's stockyards, which were located in each state. From the stockyards, the tractors were billed to dealers as per their needs and availability. This helped the company avoid paying a central sales tax of 4 per cent on the tractor price (the average tractor price was US\$9,044; one India Rupee is 0.0161 US\$).

MMFD had 26 sales offices located across India. Their main role was to coordinate supplies between the dealers and the company. They provided a rolling tractor demand forecast for the current month plus two months in the future. This forecast was used to manufacture tractors and to enable placing parts supply orders in advance. The manufacturing plants supplied tractors to the stockyards per the current monthly forecast. The tractor availability at the stockyards was a key concern given the demand from dealers according to the sales season: tractor sales were seasonal with a minus 20 per cent to plus 40 per cent change . MMFD had approximately 197 tractor models, the top 25 of which accounted for 73 per cent of sales; another 25 models accounted for the next 16 per cent of sales, and the remaining 147 models accounted for 11 per cent of sales (see Exhibit 02). The present dealer stock had an accuracy level of 63 per cent for fulfilling sales demands.

MMFD management was sensitive to monthly sales and market shares since this information was reported in the media and impacted the company's share price. This led to frequent changes in end-of-the- month manufacturing and supply to stockyards.

THE FORECASTING AND SUPPLY CHAIN DILEMMA

Dealers were carrying tractor stock equal to 40 days of their annual sales, and an additional 20 days of stock were held at company stockyards. Thus, there were 60 days of finished goods waiting for customers, who were willing to wait for five to 15 days to receive a new tractor. The production of tractors was driven by material availability as well as changing customer demands.

Menon did not want to lose sales; therefore, to cater to market demand, he frequently did mid-month revisions in the forecast plan and inter-stockyard transfer of tractors in order to meet dealer demand (stockyard to stockyard transfers of tractors accounted for 6.7 per cent of the annual sales volume with an average transportation cost of US\$145 per tractor). But even then, dealers were often forced to sell alternate models at discounted prices to customers due to the lack of availability of the desired model. This was the main reason for the high level of dealer dissatisfaction.

In the next month's sales planning meeting, Menon decided to talk to his superiors about his stress and the dealers' low satisfaction level due to the improper supply of tractors, but he wanted to go into the meeting with a solution to the problem instead of just a complaint.

EXHIBIT 01: MONTHLY SALES

(in units of Tractors)

						•	J Tructors,
MONTHS	2011-12	2012-13	2013-14	2014-15	2015-16	2016-17	2017-18
April	8,029	10,905	9,682	10,684	11,282	15,697	17,740
May	8,650	9,842	9,052	11,693	12,870	16,653	17,952
June	9,960	12,259	11,477	14,439	17,811	15,411	21,552
July	7,152	9,285	8,242	9,081	12,128	13,534	15,699
August	7,322	7,950	7,674	9,781	10,161	12,454	15,059
September	9,239	11,482	10,339	10,307	16,359	16,300	23,508
October	14,123	15,817	13,919	14,800	17,796	23,378	30,519
November	9,566	10,288	10,531	7,960	11,604	16,975	16,175
December	7,341	8,743	8,435	6,858	11,517	15,135	15,315
January	9,404	10,419	9,750	9,438	15,925	19,430	17,950
February	8,613	8,801	8,477	8,487	13,532	17,534	13,534
March	9,425	8,631	9,814	10,609	14,648	17,822	15,054

EXHIBIT 02: PARETO ANALYSIS OF MAHENDRA TRACTOR MODELS

Tractor Models	Annual Sales	Percentage	Tractor Models	Annual Sales	Percentage
1–25	159,959	72.69%	51–100	23,524	10.69%
26–50	36,111	16.41%	101–197	463	00.21%