Roll No:

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES

End- Semester Examination - May 2019		
Program/course: BBA (OG, F\&A, \& HR)	Semester - VI	
Subject: Project Management	Max. Marks	$: \mathbf{1 0 0}$
Code : BBCG-108	Duration	$: \mathbf{3 H r s}$.
No. of page/s: 2		

Section A (2*10=20 marks)

S. No.	Explain the following terms in two to three lines. Each carry 2 marks	Marks	CO
1.1	Project	$\mathbf{2}$	CO 1
1.2	Project Crashing	$\mathbf{2}$	CO 3
1.3	NPV	$\mathbf{2}$	CO 3
1.4	WACC	$\mathbf{2}$	CO 3
1.5	EIA	$\mathbf{2}$	CO 2
1.6	Responsibility	$\mathbf{2}$	$\mathbf{C O 4}$
1.7	Accountability	$\mathbf{2}$	$\mathbf{C O 4}$
1.8	Authority	$\mathbf{2}$	$\mathbf{C O 4}$
1.9	EVM	$\mathbf{2}$	$\mathbf{C O 2}$
1.10	Cost Baseline	$\mathbf{2}$	$\mathbf{C O} 3$

SECTION B: Write short notes on any four of the following. Each carries 5 marks. (5*4=20 marks)

2.1	Market/Commercial Feasibility of Project	$\mathbf{5}$	CO $\mathbf{1}$
2.2	Social Cost Benefit Analysis	$\mathbf{5}$	CO 2
2.3	Totally Projectized Organization	$\mathbf{5}$	CO 4
2.4	Cost Engineering	$\mathbf{5}$	CO 3
2.5	CPM vs. PERT	$\mathbf{5}$	CO 3

SECTION-C: Answer any two of the following questions. Each carries 15 marks. (15*2=30 marks)

3.1	Explain various phases of project life cycle with the help of a neat and labelled diagram.	$\mathbf{1 5}$	$\mathbf{C O} \mathbf{1}$

3.2	What is a contract? What are its essential features? How contracts are classified and applied in managing projects	$\mathbf{1 5}$	$\mathbf{C O 5}$				
3.3	A project requires an initial capital investment of Rs. 2,00,00,000. The capital requirement is met through a financial institution which charges 11% annual interest rate. The projected annual cash inflows during the project life:						
Year 1 2 3 4	$\mathbf{5}$	$\mathbf{1 5}$	$\mathbf{C O} \mathbf{2}$				
	Cash Inflow	$30,00,000$	$50,00,000$	$80,00,000$	$50,00,000$		There is an available opportunity of using intermediate cash inflows into another project
:---							
which has an IRR of 15\%. The salvage value at the end of project life is Rs. 25,00,000; which							
will be available at the end of sixth year only.							
Calculate the Modified NPV (MNPV) for the project. Hence, comment on the financial							
feasibility of the project.							

SECTION-D: (30 marks)

4.0 Sharon Lowe, vice president for marketing for the Electronic Toys Company, is about to begin a project to design an advertising campaign for a new line of toys. She wants the project completed within 55 days in time to launch the advertising campaign at the beginning of the Christmas season. Sharon has identified the six activities (labeled A, B, . . ., F) needed to execute this project. The table below gives the precedence rule of each activity and the PERT three-time estimates. Find the probability of completing the project in 55 days.

Activity	Preceding Activity	Optimistic Time Estimate	Most Likely Time Estimate	Pessimistic Time Estimate	Activity	Preceding Activity
A	----	11 days	12 days	13 days	A	$\ldots---$
B	-----	15 days	21 days	39 days	B	$\cdots----$
C	A	12 days	15 days	18 days	C	A
D	B	18 days	27 days	36 days	D	B
E	C	12 days	18 days	24 days	E	C
F	E	2 days	5 days	14 days	F	E

Roll No:

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES

Program/course: BBA (OG, F\&A, \& HR)
Subject: Project Management
Code : BBCG-108
No. of page/s: 3

Semester - VI
Max. Marks : 100
Duration : $\mathbf{3}$ Hrs.

SECTION A:. (1*20=20 marks)			
S. No.	Fill in the blanks. Each carry 1 mark.	Marks	CO
1.1	A project is a series of \qquad directed to accomplishment of a desired objective.	1	CO 1
1.2	PMBOK stands for	1	CO 1
1.3	The triple constraints of project management are time, ___ and scope.	1	CO 3
1.4	Full form of SCBA is	1	CO 2
1.5	Acts of God, government actions, strikes, lock-outs or other concerted action of workmen, war sabotage, riots, civil commotion, police action, revolution, flood, fire, earthquake and epidemic are collectively termed as \qquad .	1	CO 5
1.6	NPV stands for	1	CO 1
1.7	A \qquad is a graphical model depicting the interrelationship between various activities of the project.	1	CO 3
1.8	Full form of PERT is	1	CO 3
1.9	The slack time of critical activities in a project network is ___ .	1	CO 3
1.10	EPC projects are	1	CO 5
1.11	Both activities and their duration are __ in CPM.	1	CO 3
1.12	Full form of UNIDO is	1	CO 1
1.13	The time phased cumulative cost curve is ___ shaped.	1	CO 4
1.14	LSTK projects are _L_	1	CO 5
1.15	If cost of capital is same as internal rate of return, then Net Present Value of the project will be \qquad	1	CO 1
1.16	WBS stands for	1	CO 2
1.17	The most hectic phase in project life cycle is ___	1	CO 2
1.18	Full form of RAT is __.	1	CO 4

1.19	___ is an enforceable agreement between two or more parties.							1	CO 5
1.20	EVMS stands for							1	CO 4
SECTION B: Write short notes on any four of the following. Each carry 5 marks. ($5 * 4=20 \mathrm{marks}$)									
2.1	Environmental Impact Assessment							5	CO 1
2.2	Types of Cost Estimates							5	CO2
2.3	Cost Engineering							5	CO 3
2.4	S-Curve							5	CO 4
2.5	Essential Elements of a Contract							5	CO 5
SECTION-C: Answer any two of the following questions. Each carries 15 marks. (15*2=30 marks)									
3.1	What is the definition of project according to PMI? Explain its various features and characteristics. How projects can be classified and categorized on various bases?							15	CO 1
3.2	Explain the structure of matrix organization and task force organization with the help of an organizational structure. Also, discuss their suitability and limitations.							15	CO2
3.3	A project req requirement rate. The projecte There is an a project which 25,00,000; w Calculate the financial fea	quires an initia is met through ed annual cash available oppo ch has an IRR which will be a e Modified NP asibility of the	capital inv a financial inflows dur 2 50,00,000 tunity of us f 15%. The vailable at the V (MNPV) roject.	stment of R nstitution ng the proje 3 80,00,000 ng intermed salvage valu e end of six or the proje	. 2,00,00,00 hich charges l life: 4 50,00,000 ate cash inf at the end h year only. . Hence, c	0 . 5 25, ow of p mm	capital nnual interest to another ect life is Rs. on the	15	CO2
SECTION-D: Read the project details \& answer the questions followed. Each carry 10 marks. ($10 * 3=30 \mathrm{marks}$)									
4.0	Mr. Kapoor plans to construct a house in Dehradun. The size of the house is 1000 sq. feet and will cost Rs. 3,000 per sq. foot. The activities in constructing the house, the precedence activity(s), the durations and the percentage of total cost are as follows:								$\begin{gathered} \mathrm{CO} 4 \\ \& \\ \operatorname{CO} 5 \end{gathered}$
	Activity	Description		Precedence	Duration (Weeks)		\%age Of Total Cost		
	A E	Excavation and	framing	-	4		24		
	B R	Roof and Firep		A	3		8		
	C W	Wiring roughed		A	1		3		
	D \quad P	Plumbing roug	hed in	B,C	2		6		
	E S	Siding on		D	2		5		

