Name: Enrolr	nent No:		
		TROLEUM & ENERGY STUDIES DEHRADUN Per Examination May 2019	
Progra Subjec Code No. of	m/course : MA Economics (EE) t : Econometrics Modeling : ECON 7009	Semester : II Max. Marks : 100 Duration : 3 Hrs	
Q1. D	Secti efine the following in one sentence.	ion A (attempt all)	
i.	Econometrics	[2]	CO1
ii.	R^2	[2]	CO1
iii.	Dependent variable	[2]	CO1
iv.	RSS	[2]	CO1
v.	P-value	[2]	CO1
vi.	Estimator	[2]	CO1
vii.	Adjusted R ²	[2]	CO1
viii.	Conditional Mean	[2]	CO1
ix.	Degree of freedom	[2]	CO1
X.	Intercept of the model	[2]	CO1

	Answer any four question		ECTION B					
Q2.	Calculate F-value from th		ole given belov	<i>W</i> :				
		Source	SS	df				
		Model Residual	5564.44289 487.629289				[5]	CO3, CO4
		Total	6052.07218					
Q3.	Formulate one electricity	generation fur	nction, write d	own its funct	tional form and			
	econometric specifica	tion for the fol	llowing variab	les:				
	Q : Electricity C : Coal K : Capital Z : Land L : Labour	y generation					[5]	CO3, CO4
Q4.	From the regression result	t of crude oil p	production fun	ction, p-valu	es are given belo	ow.		
	Prepare a table as giv			evel indepen	ident variables a	re		
	affecting crude oil pr	oduction signi	1					
	Crude Oil Production		p > t	Level of Sig	5.			
	Price of Crude Oil		0.001					
	Per Capita GDP		0.002					
	Refinery Throughputs		0.052					
	Proved Reserves of Cr	rude Oil	0.345				[5]	CO3, CO4
	Population		0.124					
	Carbon Emission		0.564					
			1					

		EIM Coef. Std. Err. t P> t [95% conf. Interval] copp coppa cop								
	EIM	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]		CO2	
	GDPP _cons	.0224264 -1.444897	.0010231 .8098442	21.92 -1.78	0.000 0.082	.0203603 -3.08041	.0244925 .190617	[5]	CO3, CO4	
	,	ribe what do y	you mean by	7 95% cor	nfidence ir	nterval in the a	bove given			
Q6.	(i) Define de	egree of freedo	om for RSS	(ii) Defin	e Mean su	m of squares		[5]	CO3, CO4	
				SECTION	N C					
	Answer any	v two question	ns				2 X 15 =	30		
Q7.	In the follow	ving multiple	regression r	esult, Gas	Production	on – tonnes (M	lillion tonnes	oil [15]		
	equivalent)	(GP) is estima	ted using fa	ctors such	n as:					
	• GDP	per capita (co	onstant 2010) US\$) (G	P).					
				, , , , , , , , , , , , , , , , , , ,		f GDP) (DCF)),			
						, , , ,				
	 Energy imports, net (% of energy use) (EIM), Foreign direct investment, net inflows (% of GDP) (FDIP), 									
	Fore	ign direct inve	 Foreign direct investment, net innows (% of GDP) (FDIP), Gross capital formation (annual % growth) (GCFR), and 							
		0			vth) (GCFI	R), and				
	• Gros	0	ation (annua	al % grow					C01,	
	• Gros	s capital form	ation (annua	al % grow	n) (IVAR).	lumber of obs :			CO1, CO4	
	Gros Indu	s capital form stry, value add	ation (annual ded (annual df 6 927	al % grow % growth	n) (IVAR).	Number of obs (6, 32) (rob > F R-squared	= 60.86 = 0.0000 = 0.9194			
	Gros Indu Source Model	s capital form stry, value add 55 5564.44289	ation (annua led (annual df 6 927 32 15.	al % grow % growth M5 .407148 2384153	n) (IVAR).	Number of obs (6, 32) (rob > F R-squared (dj R-squared =	= 60.86 = 0.0000 = 0.9194			
	Gros Indu Source Model Residual	s capital form stry, value add 55 5564.44289 487.629289	ation (annua led (annual df 6 927 32 15.	al % grow % growth M5 .407148 2384153	n) (IVAR).	lumber of obs (6, 32) rob > F R-squared dj R-squared	= 60.86 = 0.0000 = 0.9194 = 0.9043 = 3.9036			
	 Gross Industrian Source Model Residual Total 	s capital form stry, value add 55 5564.44289 487.629289 6052.07218	ation (annua ded (annual df 6 927 32 15. 3 38 159	al % grow % growth <u>M5</u> .407148 2384153 .265057	n) (IVAR).	lumber of obs (6, 32) Prob > F -squared dj R-squared Root MSE	= 60.86 = 0.0000 = 0.9194 = 0.9043 = 3.9036 Interval] .0103502 .8352321			
	 Gross Indus Source Model Residual Total GP GDPP 	s capital form stry, value add 55 5564.44289 487.629289 6052.07218 Coef. 0156572	ation (annual ded (annual df 6 927 32 15. 3 38 159 Std. Err. .0127679	al % grow % growth M5 .407148 2384153 .265057 t .265057	n) (IVAR).	Number of obs :(6, 32) : rob > F R-squared : dj R-squared : Root MSE : [95% Conf. : 0416646	= 60.86 = 0.0000 = 0.9194 = 0.9043 = 3.9036 			

	(i) Test the hypothesis that all the explanatory variables are impacting variable individually.	dependent	
	(ii) Test the hypothesis that all the explanatory variables are impacting	dependent	
	variable jointly.		
Q8.	Describe 10 assumptions of classical linear regression model.	[15]	CO3, CO4
Q9.	Oil consumption (oc) is estimated using-	[15]	CO3, CO4
	• crude oil price (p),		04
	• crude oil import (im),		
	• crude oil export (ex),		
	• per capita GDP (pgdp) and		
	• carbon emission (co2).		
	Multiple Regression Results		
	Source SS df MS Number of obs = $F(5, 29) = 3$	35 71.34	
	Model 7938423.38 5 1587684.68 Prob > F = 0 Residual 123989.991 29 4275.51694 R-squared = 0	. 0000 . 9846	
		. 9820 5. 387	
	oc Coef. Std. Err. t P> t [95% Conf. Inter	rval]	
	im .6252913 .0466814 13.39 0.000 .5298171 .72 ex 1236515 .0271815 -4.55 0.000 1792438 06 pgdp .0050046 .0024767 2.02 0.053 000061 .01 co2 1.122187 .2407524 4.66 0.000 .6297929 1.6	06295 07655 80591 00701 14581 8. 645	
	 (a) Identify Explained Sum of square (ESS), residual sum of square (RSS show that Total sum of square (TSS)= ESS+ RSS. (b) Identify R² and interpret it. (c) Identify intercept of the model and interpret it. 	5) and	
	Section D		
	Answer the question 1 X 30 =	30	

Q10.	Write a repo	ort on the follo	wing r	esults:					[30]	CO1, CO3,
	In the follo	wing multiple	regres	sion resu	ılt, Ca	rbon En	nission (co2) is	estimated using	g	CO4
	factors such	as:								
		onsumption (c	nc)							
	• oil consumption (oc),									
	• per capita GDP (pgdp),									
	• imp	• import of goods and services (om), and								
	• expo	ort of goods an	d servi	ces (ox).						
	1	0		~ /						
	Source	SS	df	MS	;		Number of obs F(4, 29)			
	Model Residual	1020938.61 21585.3769	4 29	255234. 744.323			Prob > F R-squared Adj R-squared	= 0.0000 = 0.9793		
	Total	1042523.99	33	31591.6	5359		Root MSE	= 27.282		
	co2	Coef.	Std.	Err.	t	P> t	[95% Conf.	Interval]		
	oc pgdp om ox	.1308342 0136371 .014613 0092261	.0144 .0045 .0102 .0176	878 - 785 469 -	9.03 -2.97 1.42 -0.52	0.000 0.006 0.166 0.605	.1012106 0230202 0064089 0453181	.1604579 0042539 .0356349 .0268659		
	_cons	294.4371	170.1	929	1.73	0.094	-53.64647	642.5206		

Name Enrol	: ment No:					
			ROLEUM DEHRADU	& ENERGY STUDIES		
Subje Code	am/course ct ? page/s	End-Semeste	er Examination May 2019 Semester : II Max. Marks : 100 Duration : 3 Hrs			
			on A (attem	pt all)		
Q1. Se	elect the cor	rect answer				
i.	Regression	n analysis is concerned with estim	ating mean	value of with the help of	<u> </u>	
	 a.	dependent variable, independer variable		-	[2]	CO1
	b.	independent variable, depender variable	ıt d.	random error, explanatory variable		
ii.		ple regression line is simply the lo e for the fixed values of the expla				C01
	a.	conditional variance				
	b.	estimated means				
	c.	conditional means			[2]	
	d.	unconditional variance				

iii. I	If an estima	ator is said to be unbiased, it is	implied	that		
	a.	On average, the estimated co	efficient	values will equal the true values		
	b.	No other unbiased estimator a smaller variance	has			
	с.		upon the	true values as the sample size	[2]	CO1
		Increases	-F			
	d.	The coefficient estimates wil for small and large samples.				
	Under the l					
	a.	 Intercept	c.	Residual sum of squares	[2]	COI
	b.	Slope coefficients	d.	Conditional mean		
v. I	$E(Y X_i)=f(X_i)$	X _i) is referred to as				
	a.	Conditional expectation function	c.	Population regression line	[2]	CO
	b.	Intercept line	d.	Linear regression line		
vi. I	Population	regression function can be pre	dicted wi	th the help of		CO
	a.	ESS	c.	RSS		
	b.	TSS	d.	SRF	[2]	
vii.		regression equation is given by the point X=50, Y=100?	$\hat{Y}_{i} = 25 -$	+0.5X. What is the value of the	[2]	CO

	a.	-90	c.	-10				
	b.	10	d.	50				
viii.	When the re	egression line will pass throu	ıgh origin tl	nen $\hat{\beta}_1$ is				
	a.	0	c.	Negative				
	b.	Positive	d.	Equal to $\hat{\beta}_2$	[2]	C01		
ix.	For sample	size of 500, $\sum x_i y_i = 50$,	$\sum x_i^2 = 10$	0. Then $\hat{\beta}_2 = \underline{\qquad}$				
	a.	0.5	c.	5	[2]	CO1		
	b.	0.005	d.	1.5				
х.	When choose	sing between regression mod	lels it is pre	ferable to choose the one with:				
	a.	The highest r^2 .	c.	The highest r.				
	b.	The least number of independent variables.	d.	The most number of independent variables.	[2]	C01		
	SECTION B Answer any four questions							
Q2.		mn A and B by drawing line	<u>s.</u>					
-		A		В	[5]	CO3, CO4		

		Y _i	Population Y			
		\hat{Y}_i	Conditional mean of Y			
			Actual Y			
		$Y_i = \hat{\beta}_1 + \hat{\beta}_2 X_i + \hat{u}_i$	PRF			
			SRF			
		$E(Y_i X_i)$	Estimated Y			
		$Y_i = \beta_1 + \beta_2 X_i + u_i$	Sample Y			
Q3.	Prove that the m	nean value of the stocha	stic error term is zero.		[5]	CO3, CO4
Q4.	Formulate one c	crude oil demand function	on, write down its function	al form and		001
	econome	etric specification for th	e following variables:			
	Q_d :	Amount of crude oil de	emand			
	Y :	Gross Domestic Produ	ct			
	P :	Price of Crude Oil				
					[5]	CO3, CO4
Q5.	Explain the foll	owing diagram:			[5]	CO3, CO4

	Y_{l} Y_{l} Y_{l} Y_{l} Y_{l} Y_{l} Y_{l} Y_{l} $PRF: E(Y X_{l})$ $E(Y X_{l})$ $E(Y X_{l})$ K_{l} $Weekly income, $$			
Q6.	Define Econometrics with example.		[5]	CO3, CO4
	SECTION C Answer any two questions	2 X 15 = 30		
Q7.	Carbon intensity of 6 countries for the period from 1992 to 2011Energy Intensity (EI), Urbanization (UB), Growth rate (GR), and Energyregression result is given below.SourceS5dfM5Model5.13373882Residual1.08372761115.009423718Total6.21746643119.052247617Root MSE	ergy Use (EU). The bbs = 120 15) = 136.19 = 0.0000 = 0.8257	[15]	
	CI Coef. Std. Err. t P> t [95% Corr EI .0291608 .0046628 6.25 0.000 .0199246 UB .0121599 .0106409 1.14 0.256 0089177 GR 001982 .0026222 -0.76 0.451 0071762 EU 0002326 .0000262 -8.87 0.000 0002849 Cons 2.746853 .2916009 9.42 0.000 2.169248	7 .0332374 2 .0032121 50001807		CO3, CO4
	a. Identify dependent and independent variables.b. Identify intercept, partial slope coefficients and interpret thenc. Interpret result of R-Squared.	n.		
Q8.	The Revenue Received (RR) of Delhi electricity DISCOMs is estimatedloss reduction achieved (%) (ATCLRA), Capital Investment during TestScheme in Rs Cr (CI), Power Purchase Cost in Rs Cr (PPC), Employ	Transfer Payment	[15]	CO1, CO4

Source Model Residual	SS 11015680 1268807.). 3	df r 6 18359 26 48800		F (Pr	umber of obs (6, 26) ob > F -squared			
Total	12284487		32 38389		Ac	dj R-squared Dot MSE			
RR	Coef	. St	d. Err.	t	P> t	[95% Conf.	Interval]		
ATCLRA CI PPC EE AGE RME _CONS	. 030590 . 368721 . 626812 . 146823 8. 47487 3. 46953 213. 080	13 .3 25 .1 35 1.9 75 4.0 32 4.3	625167 814026 188288 951242 019356 341705 5.5182	0.01 0.97 5.27 0.08 2.11 0.80 0.87	0.993 0.343 0.000 0.941 0.045 0.431 0.393	-7.421048 4152629 .3825563 -3.864011 .2129709 -5.454971 -291.5896	7.482228 1.152706 .8710686 4.157658 16.73678 12.39403 717.7502		
In the follow	ving multipl	e regres	ssion resu	lt, Carbo	on Emissio	n in kilo tone	es (co2) is	[15]	CO
estimated us constant 201	sing factors s	such as p), imp	oil consume ort of good	nption i ds and s	n tones (oc services in	c), per capita constant 201	GDP in		
estimated us constant 201	sing factors s	such as p), imp	oil consume ort of good	nption i ds and s	n tones (oc ervices in 0 US\$ (ox) Number of	e), per capita constant 201).	GDP in 0 US\$ (om		
estimated us constant 20 and export o	sing factors s 10 US\$ (pgd of goods and	such as p), imp service df 4 2	oil consum port of good es in const	nption i ds and s	n tones (oc services in 0 0 US\$ (ox) Number of F(4, Prob > F R-squared	c), per capita constant 201). 29) = 342.9 = 0.000 = 0.979	GDP in 0 US\$ (om		
estimated us constant 202 and export of Source Model	sing factors s 10 US\$ (pgd of goods and 55 1020938.61	such as p), imp service df 4 2 29 7	oil consumption of good good good good good good good g	nption i ds and s	n tones (oc services in 0 US\$ (ox) Number of F(4, Prob > F	c), per capita constant 201). 29) = 342.9 = 0.000 = 0.979	GDP in 0 US\$ (om		
estimated us constant 202 and export of Source Model Residual Total	sing factors s 10 US\$ (pgd of goods and 55 1020938.61 21585.3769 1042523.99 Coef.	such as p), imp service df 4 2 29 7 33 3	oil consumption of good es in consumption of good ms 255234.652 244.323342 81591.6359	nption i ds and s ant 2010 P> t	n tones (oc services in 6 0 US\$ (ox) Number of F(4, Prob > F R-squared Adj R-squ Root MSE	c), per capita constant 201). ((((((((((((((((((GDP in 0 US\$ (om		
estimated us constant 202 and export of Source Model Residual Total	sing factors s 10 US\$ (pgd of goods and 55 1020938.61 21585.3769 1042523.99	such as p), imp service df 29 7 33 3	oil consumption of good of good good good good good goo	P> t 0.000 0.065 0.605	n tones (oc ervices in () US\$ (ox) Number of F(4, Prob > F R-squared Adj R-squ Root MSE [95% C .10121 02302 00640 04531	c), per capita constant 201). obs = 3 29) = 342.9 = 0.000 = 0.979 ared = 0.976 = 27.28 conf. Interval .06 .160457 02004253 89 .035634 .81 .026865	GDP in 0 US\$ (om 4 11 20 33 4 32 32 39 39 39 39		
estimated us constant 202 and export of Sour ce Model Residual Total Co2 oc pgdp om ox _cons	sing factors s 10 US\$ (pgd of goods and 55 1020938.61 21585.3769 1042523.99 Coef. .1308342 0136371 .014613 0092261 294.4371 following qu	such as p), imp service df 4 2 29 7 33 3 std. Er .014484 .004587 .010278 .017646 170.192	oil consum oort of good es in consum 5255234.652 744.323342 81591.6359 77. t 13 9.03 78 -2.97 75 1.42 79 -0.52 29 1.73 s using the	P> t 0.000 0.065 0.094 0.094	n tones (oc ervices in 0 US\$ (ox) Number of F(4, Prob > F R-squared Adj R-squ Root MSE [95% c .10121 02302 00640 04531 -53.646	c), per capita constant 201). (obs = 3 29) = 342.9 = 0.000 = 0.979 ared = 0.976 = 27.28 (onf. Interval 06 .160457 02004253 89 .035634 81 .026865 47 642.520	GDP in 0 US\$ (om 44)1 00 33 44 21 29 39 39 39 39 39 39 39 39 39 39 39 39 39),	
estimated us constant 202 and export of Sour ce Model Residual Total Co2 oc pgdp om ox _cons Answer the a. Iden	sing factors s 10 US\$ (pgd of goods and <u>55</u> 1020938.61 21585.3769 1042523.99 <u>Coef.</u> .1308342 0136371 .014613 0092261 294.4371 following qu tify numerat	such as p), imp service df 4 2 29 7 33 3 std. Er .014484 .004587 .010278 .017646 170.192 uestions	oil consum oort of good es in consum 5255234.652 744.323342 81591.6359 77. t 13 9.03 78 -2.97 735 1.42 79 1.73 8 using the denomina	nption i ds and s ant 2010 P> t 0.000 0.065 0.605 0.605 0.094 e given f tor degr	n tones (oc ervices in 0 US\$ (ox) Number of F(4, Prob > F R-squared Adj R-squ Root MSE [95% c .10121 02302 00640 04531 -53.646	c), per capita constant 201). obs = 3 29) = 342.9 = 0.000 = 0.979 ared = 0.976 = 27.28 conf. Interval .06 .160457 02004253 89 .035634 .81 .026865	GDP in 0 US\$ (om 4 4 1 29 34 32 1 39 39 39 39 39 39 39 39 39 39 39 39 39), I.e.	
estimated us constant 202 and export of Source Model Residual Total Co2 oc pgdp om ox _cons Answer the a. Iden b. Usir	sing factors s 10 US\$ (pgd of goods and <u>55</u> 1020938.61 21585.3769 1042523.99 <u>Coef.</u> .1308342 0136371 .014613 0092261 294.4371 following qu tify numerat	such as p), imp service df 29 7 33 3 std. Er .014484 .004587 .010278 .010278 .017646 170.192 uestions cor and and jo	oil consut oort of god es in consu M5 255234.652 244.323342 81591.6359 Tr. t Tr.	pption i ds and s ant 2010 P> t 0.000 0.006 0.166 0.605 0.094 e given 1 tor degr esis test	n tones (oc ervices in 0 US\$ (ox) Number of F(4, Prob > F R-squared Adj R-squ Root MSE [95% c .10121 02302 00640 04531 -53.646 results: ee of freed ing find ou	c), per capita constant 201). constant 201). cobs = 3 29) = 342.9 = 0.000 = 0.979 ared = 0.976 = 27.28 conf. Interval 06 .160457 02004253 89 .035634 81 .026865 47 642.520	GDP in 0 US\$ (om 4 4 1 29 39 39 39 39 39 39 39 39 39 39 39 39 39), I.e.	

	Answer the question1 X 30 = 30		
Q10.	Explain the following 8 steps of econometrics methodology with formulating Crude Oil Production function using following variables: Crude Oil Production (Q), Capital (K), Labour (L) and Land (A)	[30]	CO1, CO3, CO4
	Steps of Econometrics Methodology		
	Step 1: Statement of theory or hypothesis		
	Step 2: Specification of the mathematical model of the theory		
	Step 3: Specification of the statistical, or econometric, model		
	Step 4: Collecting the data		
	Step 5: Estimation of the parameters of the econometric model		
	Step 6: Hypothesis testing		
	Step 7: Forecasting or prediction		
	Step 8: Using the model for control or policy purposes.		