Enrolment No:	UPES

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES
 End Term Examination, May 2019

Programme: MBA (GM)
Course: Operation Research
Course Code: DSQT 7002

Semester: II
Time: 03 hrs
Max. Marks: 100

Instructions: Simple Calculator is allowed not the scientific (991-function) one. Statistical Tables and graph sheets will be provided by SRE. Try to maintain the sequence while answering.

SECTION A

b) value of a decision variable
c) value of decision variables is non -negative
d) all of them
VI. Except to be used to minimized the costs associated with distributing good, transportation model can also be used in
a) production planning
b) capacity planning
c) transshipment problem
d) comparison of location alternative
VII. If two constrains do not intersect in the positive quadrant of the graph, then
a) the problem is infeasible
b) the solution is inbounded
c) one of the constraints is redundant
d) None of the above
VIII. Before the analysis of the transportation model, what data would they need to collect?
a) A list of destinations
b) Unit cost to ship
c) A list of origins
d) All of the above
VIII. For maximization LP model, the simplex method is terminated when all values
a) cj-zj ≤ 0
b) $\mathrm{cj}-\mathrm{zj}>0$
c) $\quad \mathrm{cj}-\mathrm{zj}=0$
d) $\mathrm{zj}<0$
IX. The transportation model is used to determine
a) what type of transportation to use (boat, truck, train or plane) to transport goods, while minimizing costs
b) what day of the week goods should be transportation on to minimize costs
c) how to distribute goods from multiple origins to multiple destinations to minimize total shipping costs
d) how to best package goods so that they wouldn't break while transporting them
X. Which of the following criteria is not used for decision making under uncertainty
a) Maximin Criterion
b) Maximax Criterion
c) Minimax Criterion
d) Minimize expected loss

SECTION B

Q2	A company that operates 10 hours a day manufactures two products on three sequential process. And these process parallelally operated. The following table summarizes the data of the problem: Formulate this as LPP for mix of the two products.	5	$\begin{aligned} & \mathrm{CO1} \\ & \mathrm{CO} \end{aligned}$
Q3.	Find an initial basic feasible solution for given transportation problem by using (a) North-West corner method (b) Least cost method	5	$\begin{gathered} \mathrm{CO3} \\ \& \\ \mathrm{CO} \end{gathered}$
Q4.	The estimated sales of proposed types of perfume are as under: What will be the best alternative if a person adopts the Laplace criterion?	5	CO2
Q5	Solve the following LPP by graphical method Maximize $\mathrm{Z}=5 \mathrm{X} 1+3 \mathrm{X} 2$ Subject to constraints $2 \mathrm{X} 1+\mathrm{X} 2 \leq 1000$	5	$\begin{gathered} \mathrm{CO} \\ \& \end{gathered}$

SECTION-C

	Attempt any two questions in this section:								
Q6.	The initial cost of a machine is Rs. 6100 and resale value drops as the time passes. Cost are given in the following table:								
	Year	1	2	3	4	5	6	7	8
	Maintenance	100	250	400	600	900	1200	1600	2000
	Resale Value	800	700	600	500	400	300	200	100

When should the machine be replaced?

Q7.
There are four expert in computer Programming. The center wishes to develop with four different App. The head of the computer center, estimates the time (in minutes) required by the different computer programmer for app designing are as follows:

App	Experts			
	A	B	C	D
1	15	13	14	17
2	11	12	15	13
3	13	12	10	11
4	15	17	14	16

Using Hungarian method assign the app designing suitably and calculate the minimum time required.

Q8.
A company has factories at F1, F2 and F3, which supply to warehouses at W1, W2 and W3. Weekly factory capacities are 200, 160 and 90 units, respectively. Weekly warehouse requirement are 180, 120 and 150 units, respectively. Unit shipping costs (in rupees) are as follows:
$\mathrm{W}_{1} \mathrm{~W}_{2} \quad \mathrm{~W}_{3}$ Supply

	F_{1} 16 20 12 200 $\mathrm{~F}_{2}$ 14 8 18 160 $\mathrm{~F}_{3}$ 26 24 16 90 Demand 180 120 150 450 Find the allocation from terminals to plants using Vogel's Approximation method in order to minimize total transportation cost. Also, find the optimum cost using Modified Distribution method.		
SECTION-D Attempt one case in this section			
Q9.	CASE : Tata Motors production Line	20	
	The Big bazaar in Dehradun city has daily needs between 28 and 36 workers depending on the time of the day. The rush hours are between noon and 4 pm . The table below exhibits the number of workers needed at various hours when the bazaar is open. The Big bazaar now employs 26 full time workers, but needs a few part time workers also to manage rush time. A part time worker must put in exactly 4 hours per day, but can start any time between 10 am and 2 pm . Full time workers work from 10am to 6 pm but are allowed an hour for lunch at 1 pm . Full timers thus provide 35 hours per week of productive labour time. The management of Big bazaar, limits part time hours to a maximum of 50 percent of the day's total requirement. Part timer earns Rs. 100 per day on the average, while full timers earn Rs. 225 per day in salary and benefits on the average. The management wants to set a schedule that would minimize total worker costs. Formulate this problem as an LP model to minimize total daily work force cost.		$\begin{gathered} \mathrm{CO} 2 \\ \& \\ \mathrm{CO} 4 \\ \& \\ \mathrm{CO} \end{gathered}$
	CASE STUDY : Investment Decision During Recession		
Q10.	Mr. Sethi has Rs. 10,000 to invest in 1 of 3 options, A, B or C. The return on his investment depends on whether the economy experiences inflation, recession or no change at all. His possible returns under each economic condition are:	20	$\begin{gathered} \mathrm{CO} 4 \\ \& \\ \mathrm{CO5} \end{gathered}$

Strategy	Inflation	Recession	No Change
A	2000	1200	1500
B	3000	800	1000
C	2500	1000	1800

What should he decide using the following criterion:
a) Pessimistic (Maximin) criterion
b) Optimistic (Minimax) criterion,
c) Equally likely criterion,
d) Hurwitz criterion,

Given: The degree of optimism (α) being 0.7

Enrolment No:	UUPES

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES
 End Term Examination, May 2019

Programme: MBA (GM)
Course: Operation Research Course Code: DSQT 7002

Semester: II
Time: 03 hrs
Max. Marks: 100

Instructions: Simple Calculator is allowed not the scientific (991-function) one. Statistical Tables and graph sheets will be provided by SRE. Try to maintain the sequence while answering.

SECTION A

S. No.		$\begin{gathered} \text { Marks } \\ (10 * 3=30) \end{gathered}$	COs
Q 1	I. Except to be used to minimized the costs associated with distributing good, transportation model can also be used in a) production planning b) capacity planning c) transshipment problem d) comparison of location alternative II. If two constrains do not intersect in the positive quadrant of the graph, then e) the problem is infeasible f) the solution is inbounded g) one of the constraints is redundant h) None of the above III. Before the analysis of the transportation model, what data would they need ? e) A list of destinations f) Unit cost to ship g) A list of origins h) All of the above IV. For maximization LP model, the simplex method is terminated when all values e) cj-zj ≤ 0 f) \quad cj-zj>0 g) $\quad \mathrm{cj}-\mathrm{zj}=0$ h) $\mathrm{zj}<0$		$\begin{aligned} & \hline \mathrm{CO1} \\ & \mathrm{CO1} \\ & \mathrm{CO1} \\ & \mathrm{CO2} \end{aligned}$

V. The transportation model is used to determine
e) what type of transportation to use (boat, truck, train or plane) to transport goods, while minimizing costs
f) what day of the week goods should be transportation on to minimize costs
g) how to distribute goods from multiple origins to multiple destinations to minimize total shipping costs
h) how to best package goods so that they wouldn't break while transporting them
VI. Which of the following criteria is not used for decision making under uncertainty
e) Maximin Criterion
f) Maximax Criterion
g) Minimax Criterion
h) Minimize expected loss
VII. A type of decision making environment could be
e) Certain
f) Uncertain
g) Risky
h) All the above
VIII. The transportation model relies on certain assumptions. They include all of the following except
a) the items must be homogeneous
e) the items must be large scale
f) there is only one route being used between each origin and destination
g) the shipping cost per unit is the same
IX. The graphical method of LP problem uses
e) Objective function equation
f) constraint equation
g) Linear equation
h) 'b' and 'c' both
X. A constrain in an LP model restricts
e) A constrain in an LP value of objective function
f) value of a decision variable
g) value of decision variables is non -negative
h) all of them

SECTION B

	Attempt all 4 questions in this section:	$(4 * 5=20)$	
Q2		5	CO2

	Solve the following LPP by graphical method$\begin{aligned} & \text { Minimize } Z=20 X 1+40 \mathrm{X} 2 \\ & \text { Subject to constraints } 36 \mathrm{X} 1+6 \mathrm{X} 2 \geq 108 \\ & 3 \mathrm{X} 1+12 \mathrm{X} 2 \geq 36 \\ & 20 \mathrm{X} 1+10 \mathrm{X} 2 \geq 100 \\ & \mathrm{X} 1 \mathrm{X} 2 \geq 0 \end{aligned}$							$\begin{gathered} \boldsymbol{\&} \\ \mathrm{CO3} \end{gathered}$
Q3.	In Suvidha grocery Store, shelf space is limited and must be used effectively to increase profit. Two cereal items, a packet of Ashirbad and Pills Berry, complete for a total self-space of 60 square ft . A bucket of Asirbad occupies 2 square ft. and a packet of pills berry occupies 4 square ft. The maximum daily demand of Ashirbad and Pills Berry are 200 and 120 packets. A packet of Ashirbad net Rs. 70 profit and a packet of Pills Berry Rs. 74. Owner of Suvidha thinks that because unit profit of Pills Berry is 35% higher than Ashirbad, which amounts to allocate about to Pills Berry? Using Graphical /Simplex Method, find the optimum required unit space for both the products.							
Q4.	You work as an executive sales manager for a manufacturing company, and you currently have three salespeople on the road meeting buyers. Your salespeople are in Mumbai, Bengaluru, and Odisha; you want them to fly to three other cities: Delhi, Chennai, and Kolkata. The table						5	CO3
	From/To	Delhi	Chennai					
	Mumbai	2500	4000		350			
	Bengaluru	4000	6000		350			
	Odisha	2000	4000		250			
	Where should you send each of your salespeople in order to minimize airfare?							
Q5	There are four expert in computer Programming. The center wishes to develop with four different App. The head of the computer center, estimates the time (in minutes) required by the different computer programmer for app designing are as follows:						5	$\begin{gathered} \mathrm{CO} \\ \& \\ \mathrm{CO4} \end{gathered}$
	App							
		A	B	C		D		
	1	15	13	14		17		
	2	11	12	15		13		
	3	13	12	10		11		
	4	15	17	14		16		
	Using Hungarian required.	ssign th	ing suitably			mum time		

Q9. Mr. Sharma has Rs. 10,000 to invest in 3 different options, A, B or C. The return on his investment depends on whether the economy experiences inflation, recession or no change at all. His possible returns under each economic condition are as follows:

Strategy	State of nature		
	Inflation	Recession	No Change
A	5000	3200	2500
B	4000	800	1000
C	3500	1000	1800

What should he decide using the following criterion:
a) Pessimistic (Maximin) criterion
b) Optimistic (Minimax) criterion,
c) Equally likely criterion,
d) Hurwitz criterion,

Given: The degree of optimism (α) being 0.8

The director of finance, for a firm cooperative is concerned about the yield per acre she can expect from this year's corn crop. The probability distribution of the yields for the current weather conditions is given below:

Yield in Kg per acre	Probability
120	0.18
140	0.26
160	0.44
180	0.12

She would like to see a simulation of the yields she might expect over the next 10 years for weather conditions similar to those she is now experiencing.
(i) Simulate the average yield she might expect per acre using the following random numbers : 20, 72, 34, 54, 30, 22, 48, 74, 76, 02

She is also interested in the effect of market-price fluctuations on the cooperative's farm revenue. She makes the estimates of per Kg prices for corn.

Price per Kg (Rs.)	Probability
2.00	0.05
2.10	0.15
2.20	0.30
2.30	0.25
2.40	0.15
2.50	0.10

(ii) Simulate the price she might expect to observe over the next 10 years using the following random number:

$$
82,95,18,96,20,84,56,11,52,03
$$

