Name:

Enrolment No:

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES End Semester Examination, May 2019

Course: LSCM2007 Decision Modeling using spreadsheet Programme: BBA LM Time: 03 hrs.

Instructions: As per sections

Max. Marks: 100

Semester: IV

SECTION A

S. No.	Attempt all questions	Marks	CO		
Q 1	Mark True/False (T/F) for the following	8			
a)	Formulas are entered in the worksheet cell and must begin with a multiplication sign (T/F)				
b)	The output generated from linear programming models provides useful "what if" analysis. (T/F)	2	4		
c)	Optimization seeks to render its supply chain efficient, flexible and responsive as possible. (T/F)	2 4			
d)	G.B.Dantzig design the "simplex method" for solving linear programming formulations.(T/F)	2	3		
Q 2	Fill in the blanks	12			
a)	The full form of VAM is	2	3		
b)	is a special kind of Linear Programming (LP) problem in which goods are transported from a set of sources to a set of destinations	2	3		
c)	There is an overabundance of data for the purposes of managerial decision making.	2	1		
d)	Any change in the right hand side of a constraint will change the optimal solution.	2	3		
e)	There are two basic types of cell references in Excel: and	2	1		
f)	algorithm is used to solve the assignment problem				
	SECTION B				
	Attempt any four questions				
Q3	What is a linear programming model? What are its components?	5	2		
Q4	What is a linear programming model? What are its components? What are the various assumptions of linear programming models?		2		
Q5	What do you understand by infeasibility and unboundness?		3		
Q6	Formulate the assignment problem? What are the assumptions?		4		
Q7	What are the various types of What if analysis in spreadsheet?	5	1		
	SECTION-C	•			
	Attempt all questions	30			
Q8	Use graphical model to solve the following LP problem Minimize $Z = 600x_1 + 400x_2$	10	2		

	Subject to	o the constraints					
	i) 32	$x_1 + 3x_2 >= 40$					
	,	$x_1 + x_2 >= 40$					
	,	$x_1 + 5x_2 >= 44$					
	and x_1, x_2						
Q9	Determine the in			-		m	
	by using a) NWC	CR, b) LCM and	l c) VAM. Which	n method gives b	est results?		
		W1	W2	W/2	Supply		2
	F1	16	20	W3 12	Supply 200	10	3
	F1 F2	10	8	12	160	-	
	F3	26	24	16	90	-	
	Demand	180	120	150	70		
Q10	A department of				be performed '	The	
	time in hours that						
	matrix.			Joe 15 groom			
	Jobs/Emp	Ι	II III	IV	V		
	loyees						
	A	10	5 13	15	16	10	5
	В	3	9 18	13	6	10	5
	C	10	7 2	2	2		
	D	7	11 9	7	12		
	E	7	9 10	4	12		
	How should the j	jobs be allocated	l, one per employ	yee, so as to min	imize the total m	nan	
	hours?						
			SECTIO	N_D			
			SECIIC	JIN-D			
	Attempt all que	stions				20	
						30	
Q11	The table below						
		- I					
		W1	W2	W3	Supply		
			I			4	
		180	20			15	3
	F1	16	20	12	200		U
			100	60			
	F2	14	8	18	160		

	F3	26	24	90 16	90				
	Demand	180	120	150					
	Answer the following questions:a) Is the solution feasible?b) Is the solution degenerate?c) Is the solution optimum? If not, find the optimum solution using Modi method.								
Q12	Omega Leather goods manufactures two types of leather soccer balls X and Y. Each type of ball requires work by two types of employees – semi skilled and skilled. The available time (per week) for manufacturing each type by employee and the time requirement for each type of ball are given below. The cost of an hour of semi-skilled labor is Rs. 5.50 and for skilled labor it is Rs. 8.50. To meet the weekly demand requirements, atleast 15 balls of type X and 10 balls of type Y need to be manufactured.								
	Type of employe	e Manufa Ball	cturing time rec (hr)	quirement T Ball Y	ime available (hr/week)		15	2	
					20				
	Semi-skilled	2		3	80				
	Skilled46150a) Formulate a linear programming model to minimize the costb) Solve the above problem using the graphical method								