Name:	
Enrolment No:	UNIVERSITY WITH A PURPOSE

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES End Semester Examination, May 2019

Semester: II

Max. Marks: 100

Course: Business Economics I

Program: BA-LL. B (Hons.) Criminal Law/ B.A., LL.B. (Hons.) Energy Laws/ B.B.A, LL.B. (Hons.) Corporate Laws/ B.B.A., LL.B. (Hons.) Banking, Insurance and Finance / International Trade and Investment Laws/ B.COM., LL.B. (Hons.) Taxation/ Media & Entertainment Laws Course code: CLNL 1014 Time: 03 Hours

Instructions: Do as directed

SECTION A

		Marks	СО
Q1.	Write the correct answer		
i.	The elasticity of demand on different points on a linear demand curve is		
	(a) constant		
	(b) different, varying from 0 to ∞	[2]	CO1
	(c) always 0		
	(d) none of the above		
ii.	A vertical demand curve is		
	(a) perfectly elastic		
	(b) perfectly inelastic	[2]	CO1
	(c) highly elastic		
	(d) unitary elastic		
iii.	Market equilibrium represents		
	a. total consumption of a good		
	b. intersection between market demand and market supply	[2]	CO1
	c. total demand for a good		
	d. total production of a good		
iv.	When total utility increases, marginal utility is		
	(a) negative and increasing,		
	(b) negative and declining,	[2]	CO1
	(c) zero, or		
	(d) positive and declining.		
v.	The statement $U = 10$ utils implies		
	(a) an ordinal measure of utility only,		
	(b) a cardinal measure of utility only,	[2]	CO1
	(c) an ordinal and a cardinal measure of utility, or		
	(d) none of the above.		
	SECTION B	1 1	
Q2.	Define demand function and supply function.	[4]	CO1

Q3.	Mention the cau	ises	of right	ward sh	ift in der	nand					[4]	CO2
Q4.	State and draw t	the d	liagram	for the	exceptio	ns to the	e law of	supply.			[4]	CO1
Q5.	Given the follow If $Q = 4$, find th	U	P =	13 <i>– Q</i>	and C =	ion of pr = 25 + ([4]	CO5
Q6.	Explain Consun					fference	curve a	pproach			[4]	CO2
					SI	ECTION	N-C					
Q 7.	Explain the law	of v	ariable	proport	ions diag	grammat	ically.				[5]	CO3,4
Q8.	Explain the pric with diagrams.	e an	d outpu	it detern	nination	under pe	erfect co	mpetitio	n in the	short run	[5]	CO3,4
Q9.	Explain the feat	ures	of Mor	nopoly.							[5]	CO3,4
Q10.	Calculate price	elast	icity fro	om the f	ollowing	5						
	Price (Rs.)	8	7	6	5	4	3	2	1	0	[5]	CO5
	Quantity (1b)	0	1000	2000	3000	4000	5000	6000	7000	8000		
		1			SI	ECTION	N-D			1 1		
Q11.	Consider a hypo table. Calculate Total Cost and I	Tot	al Cost	t, Avera	ge Varia	able Cos	st, Avera	age Fixe the shape	d Cost, e of thes	Average e curves.		
	Outp	ut		Т		ed Cost		Total V	ariable	Cost		
	0				10				0 20			
	1				10				30		[20]	CO5
	3				10				35		[=0]	0.00
	4				10				45			
	5				10	0			60			
	6				10	0			80			
	7				10	0			126			
Q12.	Suppose a firm' the average reve											
		Ot	itput				Tot	al Reve	nue			
			0					0			[15]	CO5
			1					10				
			2					18				
			3					24				
			4					28				

	5	28		
	6	24		
Q13.	Suppose firm A produces in a perfectly co monopoly market, how will you differentia curves as well as their revenue structure.	mpetitive market and firm B produces in a ate the two. Also comment on the demand	[15]	CO5

Name:		L U	PE	ES
Enrolme	ent No:	UNIVERSITY W		
	UNIVERSITY OF PE	TROLEUM AND ENERGY STUDIES		
	End Semes	ter Examination, May 2019		
Course:	Business Economics I	Semes	ter: II	
Program	n: BA-LL. B (Hons.) Criminal Law/ B.A., LL.	B. (Hons.) Energy Laws/ B.B.A, LL.B. (Hons.) Corpo	orate Laws	/ B.B.A. ,
LL.B. (H	ons.) Banking, Insurance and Finance / Intern	ational Trade and Investment Laws/ B.COM., LL.B.	(Hons.) Ta	xation/
Media &	Entertainment Laws			
Course	code: CLNL 1014	Time:	03 Hours	
Instruct	tions: Do as directed	Max. I	Marks: 10	00
		SECTION A		
			Marks	СО
Q1.	Write the correct answer			

×			
Ι	Which of the following is father of economics?		CO1
	(a) J.M. Keynes		
	(b) Adam Smith	[2]	
	(c) Amartya Sen		
	(d) Alferd Marshal		
II	Who said economics is the science of wealth		CO1
	(a) J.M. Keynes		
	(b) Adam Smith	[2]	
	(c) Amartya Sen		
	(d) Alferd Marshal		
III	Elasticity of demand measures:		CO1
	(a) % age change in quantity demanded due % age change in output		
	(b) % age change in output due to % age change in price	[0]	
	(c) % age change in quantity demanded due to % age change in Price, Income and	[2]	
	price of related good.		
	(d) All of the above.		
IV	If 25% change in income brings 20% change in quantity demanded of good, then the		CO1
	good is said to be:		
	(a) Normal good	[0]	
	(b) Inferior good	[2]	
	(c) Luxury good		
	(d) superior good		

$\frac{1}{ce \text{ and } Is}$ tion of p = 25 +	ain its producer: Q + 0.5 1 iso-cos	Q^2	,		[2] [4] [4] [4] [4]	CO1 CO2 CO1 CO5
d. ECTIO ram ve? Expl ce and Is tion of p = 25 + uant and	ain its producer: Q + 0.5 1 iso-cos	Q^2			[4] [4] [4]	CO2 CO1 CO5
d. ECTIO ram ve? Expl ce and Is tion of p = 25 + uant and	ain its producer: Q + 0.5 1 iso-cos	Q^2			[4] [4] [4]	CO2 CO1 CO5
d. ECTIO ram ve? Expl ce and Is tion of p = 25 + uant and	ain its producer: Q + 0.5 1 iso-cos	Q^2			[4] [4]	CO2 CO1 CO5
ECTIO ram ve? Expl ce and Is tion of p = 25 + uant and	ain its producer: Q + 0.5 1 iso-cos	Q^2	·		[4] [4]	CO2 CO1 CO5
ram ve? Expl ce and Is tion of p = 25 + uant and	ain its producer: Q + 0.5 1 iso-cos	Q^2	·		[4] [4]	CO2 CO1 CO5
ve? Expl ce and Is tion of p = 25 + uant and	soquant roducer: Q + 0.5 l iso-cos	Q^2			[4] [4]	CO2 CO1 CO5
ce and Is tion of p = $25 +$ uant and	soquant roducer: Q + 0.5 l iso-cos	Q^2			[4]	CO1 CO5
tion of p = $25 +$ uant and	Q + 0.5	Q^2				CO5
= 25 +	Q + 0.5 l iso-cos	Q^2			[4]	
uant and	l iso-cos	c			[4]	
		t line				
		st line				
ECTIO					[4]	CO2
	N-C					
demand	with dia	agrams.			[5]	CO3,4
		0			[5]	005,4
ty appro	ach				[5]	CO3,4
•					[5]	CO3,4
g						+
4	3	2	1	0		
					[5]	CO5
400	500	600	700	800		
ECTIO	N-D		1		L	<u> </u>
	4 4 400	eg 4 3 400 500	ag 4 3 2 400 500 600	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Image: second

1	Output	Total Fixed Cost	on the shape of these curves Total Variable Cost		
	<u> </u>	60	0		
	1	60	30		
	2	60	40	[20]	CO5
	3	60	45		
	4	60	55		
	5	60	75		
	6	60	120		
	_				
	he average revenue, marg	60 nd total revenue is given in the inal revenue and describe the	relation between them.		
	Suppose a firm's output ar	nd total revenue is given in the	e following table. Estimate		
	Suppose a firm's output ar he average revenue, marg	nd total revenue is given in the	e following table. Estimate relation between them. Total Revenue 0		
	Suppose a firm's output ar he average revenue, marg Output 0 1	nd total revenue is given in the	e following table. Estimate relation between them. Total Revenue 0 16		
	Suppose a firm's output ar he average revenue, marg Output 0 1 2	nd total revenue is given in the	e following table. Estimate relation between them. Total Revenue 0 16 30	[15]	CO5
	Suppose a firm's output ar he average revenue, marg Output 0 1	nd total revenue is given in the	e following table. Estimate relation between them. Total Revenue 0 16 30 42	[15]	CO5
	Suppose a firm's output ar he average revenue, marg Output 0 1 2 3 4	nd total revenue is given in the	e following table. Estimate relation between them. Total Revenue 0 16 30 42 52	[15]	CO5
	Suppose a firm's output ar he average revenue, marg Output 0 1 2 3 4 5	nd total revenue is given in the	e following table. Estimate relation between them. Total Revenue 0 16 30 42 52 60	[15]	CO5
	Suppose a firm's output ar he average revenue, marg Output 0 1 2 3 4 5 6	nd total revenue is given in the	e following table. Estimate relation between them. Total Revenue 0 16 30 42 52 60 66	[15]	CO5
	Suppose a firm's output ar he average revenue, marg Output 0 1 2 3 4 5	nd total revenue is given in the	e following table. Estimate relation between them. Total Revenue 0 16 30 42 52 60	[15]	CO5