Roll No:-----

10 X 2= 20

UNIVERSITY OF PETROLEUM & ENERGY STUDIES

DEHRADUN

	DEIIRADUI			
	End Semester Examination-May 2018			
Program/course	: MA Economics (EE)	Semester	: II	
Subject : Econometric Modeling Max. Marks :				
Code	: ECON 7009	Duration	: 3 Hrs	
No. of page/s	:9			

Section-A

Q1. Answer the questions:

a.

Econometrics means _____. I.

- Statistical measurement Functional measurement c.
- economic measurement d. All the above b.
- II. Which of the following statements is true concerning the population regression function (PRF) and sample regression function (SRF)?
 - The PRF is the estimated model a.
 - The PRF is used to infer likely values of the SRF b.
 - Whether the model is good can be determined by comparing the SRF c. and the PRF
 - The PRF is a description of the process thought to be generating the d. data.

III. When the estimated slop coefficient in the simple regression model β_2 , is zero, then

- a. $r^2 = 0$ c. $0 \le r^2 \le 1$
- b. $r^2 \le 1$ d. $r^2 \le 0$
- IV. $E(Y|X_i)=f(X_i)$ is referred to as
 - a. Conditional expectation c. Population regression line function
 - b. Intercept line d. Linear regression line
- V. For coefficient of determination r^2 for a regression model
 - a. $r^2 = 0$ b. $r^2 \le 1$ c. $0 \le r^2 \le 1$ d. $r^2 \le 0$

VI. If coefficient of determination $r^2 = 1$ for a regression model, then _____.

a.	it is a perfect fit model	с.	X = Y	

- b. $X \leq Y$ d. E(Y) = E(X)
- VII. $u_i = Y_i E(Y | X_i)$ is known as _____.
 - a. deviation of an expected Y_i c. deviation of an individual X_i around its mean value around its expected value

VIII. Systematic component of the equation, $Y_i = E(Y | X_i) + u_i$ is _____.

- a. u_i c. $E(Y | X_i)$
- b. Y_i d. X_i

IX. In confidence interval estimation, $\alpha = 5\%$, this means that this interval includes the true β with probability of _____.

a.	5%	с.	105%
b.	95%	d.	100%

X. The least square estimators are

a.	Point estimators	с.	Sample estimators

b. Population estimators d. Interval estimators

Section **B**

Attempt any four questions

Q2. The VIF of regression considering Hydroelectricity Consumption (Million tonnes oil equivalent) as dependent variable is given. Analyses both VIF and TOL and discuss about presence of multicollinearity in the model.

Variable	VIF	1/VIF
GDP CO2 COP FDI	260.14 249.21 3.72 3.44	0.003844 0.004013 0.268896 0.290332
Mean VIF	129.13	

4X5 = 20

Q3. Prepare the table given below and state positive or negative relationship between OC and independent variables.

Sl.No.	OC	β Coeff.	Calculated	Critical t-	State positive or negative
			t-Value	Value (at	relationship between OC and
				5%)	independent variables
1	OE	0.018	-2.30	1.697	
2	RT	-0.030	4.70	1.697	
3	Р	-0.070	2.56	1.697	
4	OP	-0.862	6.65	1.697	
5	PR	0.073	-1.33	1.697	
6	Const.	55.40	-4.44	1.697	

Q4. Formulate one Hydroelectricity Consumption function, write down its functional form and econometric specification for India using following variables:

- HEC : Hydroelectricity Consumption (Million tonnes oil equivalent)
- GDP : GDP (constant 2010 US\$)
- CO2 : Carbon Dioxide Emissions (Million tonnes carbon dioxide)

Q5. Consider the following regression output:

FDI	: Foreign direct investment, net inflows (% of GDP)
-----	---

- CC : Coal Consumption (Million tonnes oil equivalent)
- OC : Oil Consumption (Million tonnes)

GDP	: GDP (constant 2010 US\$)

		.,				
Source	SS	df	MS		Number of obs	
Model Residual	22.042701 8.22985362		. 347 56699 22860704 5		F(3, 36) Prob > F R-squared Adj R-squared	= 0.0000 = 0.7281
Total	30.2725546	39 .	776219348		Root MSE	= .47813
FDI	Coef.	Std. Er	r. t	P> t	[95% Conf.	Interval]
CC OC GDP _cons	0131586 .0168128 1.83e-12 3090215	.00898 .007366 1.42e-1 .260020	8 2.28 2 1.29	0.152 0.028 0.205 0.242	031377 .0018723 -1.04e-12 836367	.0050598 .0317534 4.70e-12 .2183239

- a) Interpret coefficient of CC and OC.
- b) Test the hypothesis that OC does not affect FDI. Which test do you use? And why?

Q6. The ANOVA table of one regression result is given below.

The critical value of F(1, 16) = 2.4904 and $\alpha = 5\%$.

Source	SS	Df	MSS
Model	326765512	1	
Residual	167697811	16	
Total	494463323	17	

Compute

- (i) Mean sum of squares,
- (ii) F- statistics
- (iii) state the overall significance of the model.

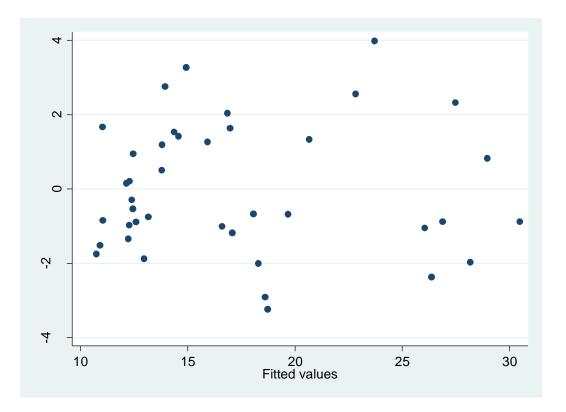
Section C

Answer any two questions

Q7. Prepare the following table and fill the blank using the regression result given below:

-			
i.	$R^2 =$	vi.	Number of significant t-ratio =
ii.	ESS =	vii.	Adjusted $R^2 =$
iii.	Dependent variable is	viii.	TSS =
iv.	RSS =	ix.	Degree of freedom for RSS =
v.	P-value for $F = $	х.	Intercept of the model =
			·

Source	55	df		MS		Number of obs F(4, 35)		40 97,64
Model Residual	1330.5003 119.230714	4 35		625074 659184		Prob > F R-squared Adj R-squared	=	0.0000 0.9178 0.9084
Total	1449.73101	39	37.	.17259		Root MSE	=	1.8457
HEC	Coef.	Std.	Err.	t	P> t	[95% Conf.	In	terval]
COP GDP FDI CO2 _CONS	.0163558 -1.39e-12 1.11567 .0107857 7.397092	.0189 8.76e .6225 .0091 1.948	-12 693 245	0.86 -0.16 1.79 1.18 3.80	0.395 0.875 0.082 0.245 0.001	0221799 -1.92e-11 1482133 007738 3.441193	1	0548915 .64e-11 .379552 0293094 1.35299


Q8. In the following multiple regression result, Hydroelectricity Consumption (Million tonnes oil equivalent) is estimated using factors such as Crude oil prices -US dollars per barrel (COP), GDP-constant 2010 US\$ (GDP), Foreign direct investment, net inflows -% of GDP (FDI), and Carbon Dioxide Emissions -Million tonnes carbon dioxide (CO2).

Source Model Residual	55 1330. 5003 119. 230714	df 4 35	332.625074 3.40659184			Number of obs F(4, 35) Prob > F R-squared		
Total	1449.73101	39			Adj R-squared = Root MSE =		0.9084 1.8457	
HEC	Coef.	Std.	Err.	t	P> t	[95% Conf.	In	terval]
COP GDP FDI CO2 _cons	.0163558 -1.39e-12 1.11567 .0107857 7.397092	.0189 8.76e .6225 .0091 1.948	-12 693 245	0.86 -0.16 1.79 1.18 3.80	0.395 0.875 0.082 0.245 0.001	0221799 -1.92e-11 1482133 007738 3.441193	1 2	0548915 .64e-11 .379552 0293094 1.35299

Using individual hypothesis testing find out relationship between HEC and its determinants.

$2 \times 15 = 30$

Q9. Detect problems of heteroscedasticity for a regression model, where Hydroelectricity Consumption-Million tonnes oil equivalent (HEC) is estimated. The post estimation results are given below. Critically analyze and interpret the results.

i. Graphical Method

ii. Breusch-Pagan/ Cook-Weisberg test

Breusch-Pagan / Cook-Weisberg test for heteroskedasticity Ho: Constant variance Variables: HEC chi2(1) = 2.42 Prob > chi2 = 0.1196

iii. Park Test: Park suggests that σ^2_i is some function of the explanatory variable X_i . The functional form he suggested was

 $\sigma^2_i = \sigma^2 X^{\beta_i} e^{\nu i}$

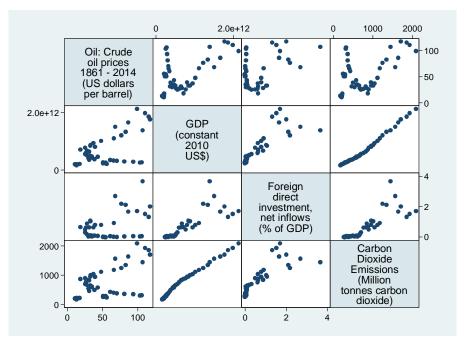
Using this functional form suggest how to detect the heteroscedasticity.

Section D

Answer all questions

$2 \ge 15 = 30$

Q10. In the following multiple regression result, Hydroelectricity Consumption (Million tonnes oil equivalent) is estimated using factors such as Crude oil prices -US dollars per barrel (COP), GDP-constant 2010 US\$ (GDP), Foreign direct investment, net inflows -% of GDP (FDI), and Carbon Dioxide Emissions -Million tonnes carbon dioxide (CO2).


Source Model Residual	55 1330.5003 119.230714	df 4 35	332.625074 3.40659184			Number of obs F(4, 35) Prob > F R-squared	40 97.64 0.0000 0.9178	
Total	1449.73101	39			Adj R-squared = Root MSE =	=	0.9084 1.8457	
HEC	Coef.	Std.	Err.	t	P> t	[95% Conf.	In	terval]
COP GDP FDI CO2 _CONS	.0163558 -1.39e-12 1.11567 .0107857 7.397092	.0189 8.76e .6225 .0091 1.948	-12 693 245	0.86 -0.16 1.79 1.18 3.80	0.395 0.875 0.082 0.245 0.001	0221799 -1.92e-11 1482133 007738 3.441193	1	0548915 .64e-11 .379552 0293094 1.35299

Interpret the post estimation results and justify whether multicollinearity is present in the model

or not.

Post Estimation Tests:

(i) Scatter Plot Matrix

(ii) Correlation Matrix

	COP	GDP	FDI	CO2
COP GDP FDI CO2	1.0000 0.5130 0.4598 0.4398	1.0000 0.8239 0.9944	1.0000 0.8271	1.0000

(iii) R-square and t-ratio comparison

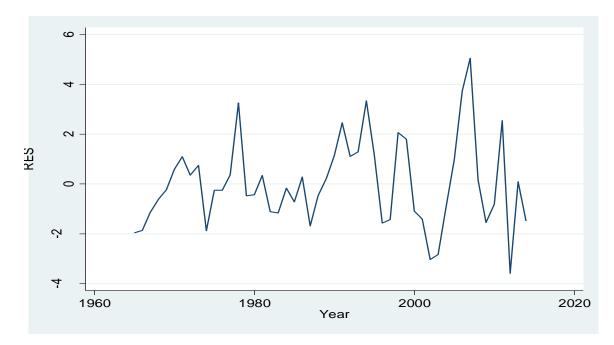
Q11. In the following multiple regression result, Hydroelectricity Consumption (Million tonnes oil equivalent) is estimated using factors such as Crude oil prices -US dollars per barrel (COP), GDP-constant 2010 US\$ (GDP), and Carbon Dioxide Emissions -Million tonnes carbon dioxide (CO2).

Source	55	df	MS		Number of obs F(3, 46)	
Model Residual	2277.41479 153.37901	3 46	3 759.138263 6 3.33432629		Prob > F = R-squared =	= 0.0000 = 0.9369
Total	2430.7938	49				
HEC	Coef.	Std. E	irr. t	P> t	[95% Conf.	Interval]
COP GDP CO2 _cons	.0483365 -1.67e-11 .028034 3.259869	.01097 4.62e .00459 .71114	-12 -3.61 904 6.11	0.001	.0262395 -2.60e-11 .018794 1.828408	.0704335 -7.37e-12 .0372739 4.69133

Interpret the post estimation results and justify whether autocorrelation is present in the HEC series

or not.

Post-estimation tests:


(i) Durbin's Alternative Test

Durbin's alternative test for autocorrelation								
lags (<i>p</i>)	F	df	Prob > F					
1 2 3 4 5	6.335 3.359 2.559 1.949 1.745	(1, 45) (2, 44) (3, 43) (4, 42) (5, 41)	0.0155 0.0439 0.0674 0.1200 0.1459					
HO: no serial correlation								

(ii) Breusch-Godfrey LM test

Breusch-Godfrey LM test for autocorrelation							
lags(p)	F	df	Prob > F				
1 2 3 4 5	6.170 3.312 2.525 1.957 1.755	(1, 45) (2, 44) (3, 43) (4, 42) (5, 41)	0.0168 0.0457 0.0701 0.1187 0.1438				
HO: no serial correlation							

(iii) Graphical Method:

