Name: Enrolment No:			
$\begin{gathered} \text { Pro } \\ \text { Tin } \\ \text { Ins } \\ \text { Att } \\ 20 \\ \hline \end{gathered}$	Course: CHEG 235-Chemical Process Calculationsramme: B.Tech (APE)Gas \& B.Tech CE+RPSemester: ODD-2017-18 (III Sem : 03 hrs . Max. Marks:100uctions:mpt all questions from Section A (each carrying 12 marks); and all questions from Sectionarks);	ter) (each	rrying
Section A (attempt all)			
1.	A gaseous mixture of $1500 \mathrm{~L} / \mathrm{s}$ has the following composition : $\mathrm{CH}_{4}-15 \%, \mathrm{C}_{2} \mathrm{H}_{6}-25 \%$ and $\mathrm{H}_{2}-60 \%$ (all by volume) at $35^{\circ} \mathrm{C}$ and 2300 mm Hg gauge, calculate, a) the moles of each component b) the concentration of each component in $\mathrm{gm} \mathrm{mol} / \mathrm{cc}$ c) the partial pressure of each component d) the molar density of the mixture e) the mass flow rate of the mixture f) the average molecular weight of the gas	[12]	CO2
2.	A feed mixture consisting of 60% ethylene, 3% inerts and 37% water is sent to the reactor. The products analyzed 53.89% ethylene, 14.37% ethanol, 1.80% ether, 26.35% water and 3.59% inerts. Calculate the conversion of ethylene, yield of ethanol and ether based on ethylene.	[12]	CO 3
3.	The dry bulb temperature and dew point of ambient air were found to be 302 K and 291 K respectively. The barometer reads 100.0 kPa absolute. The vapor pressure of water at dew point is 2.0624 kPa . Compute (a) the absolute molar humidity (b) the absolute humidity (c) the $\% \mathrm{RH}$, (d) the $\%$ saturation, (e) the humid heat, (f) the humid volume.	[12]	CO4
4.	The following data were obtained in a test on coal fired steam generator. The ultimate analysis of coal: C, $80.5 ; \mathrm{H}, 4.6 \%$; $\mathrm{O}, 5.0 \%$; N, $1.1 . \%$; ash, 8.8%. No carbon is lost in the refuse. The Orsat analysis of flue gas: $\mathrm{CO}_{2}, 16.4 \% ; \mathrm{O}_{2}, 2.3 \% ; \mathrm{CO}, 0.4 \% ; \mathrm{N}_{2}, 80.9 \%$. Calculate: a)The weight of dry gaseous products formed per 100 kg of coal fired b) The percent excess air supplied for combustion	[12]	CO5
5.	Pure naphthalene is fed to a jacketed heater at $32^{\circ} \mathrm{C}$ and is vaporized at atmospheric pressure by condensing Dowtherm-A vapors in a jacket at $1.15 \mathrm{~kg} / \mathrm{m}^{2}\left(\mathrm{~T}_{\text {sat }}=260^{\circ} \mathrm{C}\right.$ and latent heat of vaporization is $68.6 \mathrm{kcal} / \mathrm{kg}$). Assume no subcooling of vapors. Calculate the quantity of Dowtherm-A condensed per 10 kg of naphthalene evaporated. Boiling point: $218^{\circ} \mathrm{C}$ Melting point: $80^{\circ} \mathrm{C}$ Latent Heat of Vaporization: $75.5 \mathrm{kcal} / \mathrm{kg}$	[12]	CO6

	Latent Heat of Fusion: $36 \mathrm{kcal} / \mathrm{kg}$ Use the average C_{p} of solid is given by : $\mathrm{C}_{\mathrm{s}}=0.28+0.0011 \mathrm{~T} \mathrm{kcal} / \mathrm{kg}{ }^{\circ} \mathrm{C}$ Use the average C_{p} of liquid is given by: $\mathrm{C}_{1}=0.35+0.0008 \mathrm{~T} \mathrm{kcal} / \mathrm{kg}{ }^{\circ} \mathrm{C}$ where T is in ${ }^{\circ} \mathrm{C}$.		
	SECTION B (Attempt all)		
6.	The absorber-stripper system shown below is used to remove carbon dioxide and hydrogen sulfide from a feed consisting of $30 \% \mathrm{CO}_{2}$ and $10 \% \mathrm{H}_{2} \mathrm{~S}$ in nitrogen. In the absorber, a solvent selectively absorbs hydrogen sulfide and carbon dioxide. The absorber overhead contains only $1 \% \mathrm{CO}_{2}$ and no $\mathrm{H}_{2} \mathrm{~S} . \mathrm{N}_{2}$ is insoluble in the solvent. The rich solvent stream leaving the absorber is flashed, and the overhead stream consists of 20% solvent, and contains 25% of the CO_{2} and 15% of the $\mathrm{H}_{2} \mathrm{~S}$ from the raw feed to the absorber. The liquid stream leaving the flash unit is split into equal portions, one being returned to the absorber. The other portion, which contains $5 \% \mathrm{CO}_{2}$, is fed to the stripper. The liquid stream leaving the stripper consists of pure solvent and is returned to the absorber along with makeup solvent. The stripper overhead contains 30% solvent. Calculate all flow rates and compositions of unknown streams. The gas feed rate is 100 $\mathrm{mol} / \mathrm{h}$.	[20]	CO5
7.	Ammonia is synthesized as per the following reaction: The standard heat of reaction at 298 K for this reaction is -46.222 kJ . The specific heats of the reaction participants are represented by Where Cpo is in $\mathrm{J} / \mathrm{mol} \mathrm{K}$ and the constants are : Obtain an expression relating the heat of reaction and the temperature of the reaction. Pyrites fines are roasted in a chamber plant for making sulphuric acid. The gases leaving the roaster are at 775 Kand have molar composition SO2 $7.09 \%, \mathrm{O} 210.55 \%$, SO3 0.45%, and $\mathrm{N} 281.91 \%$. Calculate the heat content of 1 kmol gas mixture over 298.15 K using the heat capacity data provided in the given table. SO2: $24.7706+62.9481 \times 10-3 \mathrm{~T}-44.2582 \times 10-6 \mathrm{~T} 2+11.122 \times 10-9 \mathrm{~T} 3$ O2:26.2057+11.7551x 10-3T-2.3426X10-6T2-0.5623 x 10-9T3 SO3: $22.0376+121.624 \times 10-3 \mathrm{~T}-91.8673 \times 10-6 \mathrm{~T} 2+24.3691 \times 10-9 \mathrm{~T} 3$	[20]	CO6

	$\mathrm{N} 2: 29.5909-5.141 \times 10-3 \mathrm{~T}+13.1829 \times 10-6 \mathrm{~T} 2-4.968 \times 10-9 \mathrm{~T} 3$ or A continuous fractionating column at 1 atm is to be used to separate $15000 \mathrm{~kg} / \mathrm{h} \mathrm{of} \mathrm{a}$ solution of benzene and toluene containing 50 weight $\%$ benzene into an overhead product containing 96 weight $\%$ benzene and a bottom product containing 97 weight $\%$ toluene. The feed will be at its boiling point and a reflux ratio of 2.5 kg of reflux per kg of distillate or product is to be used. Calculate the condenser and reboiler heat load. Enthalpy of feed $=170.8 \mathrm{~kJ} / \mathrm{kg}$ Enthalpy of reflux liquid $=67 \mathrm{~kJ} / \mathrm{kg}$ Enthalpy of vapor leaving the column and entering the condenser=540 $\mathrm{kJ} / \mathrm{kg}$ Enthalpy of liquid leaving the reboiler $=201.8 \mathrm{~kJ} / \mathrm{kg}$

