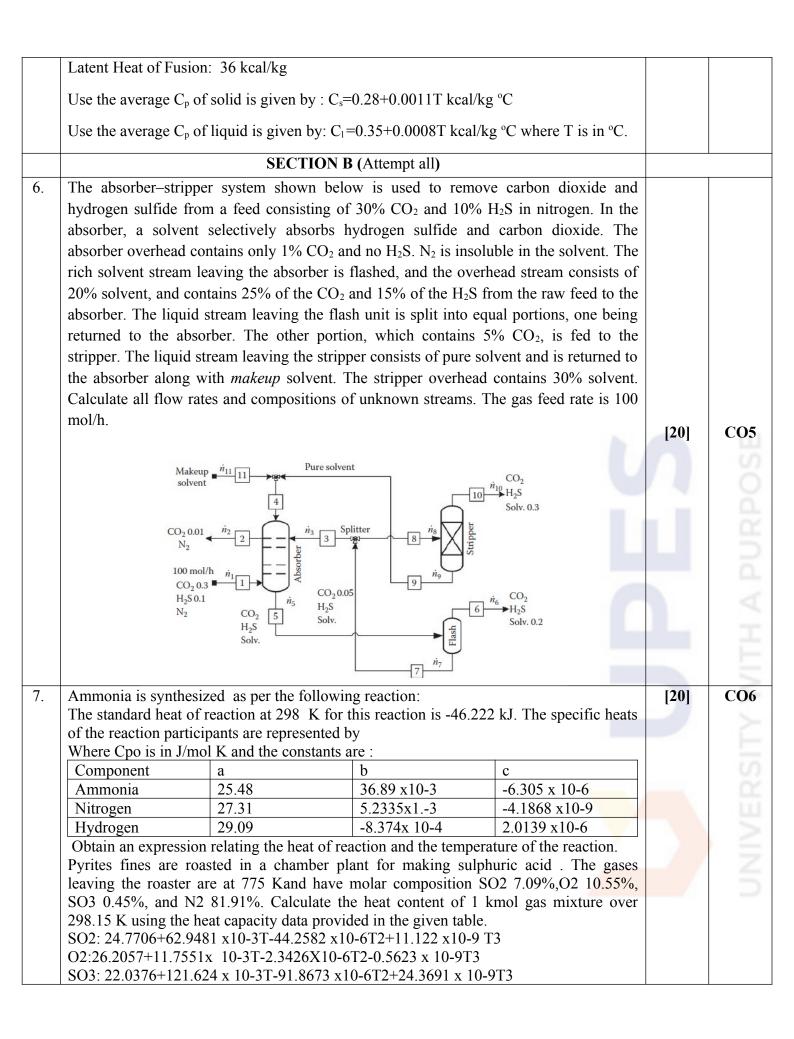
Name: UPES **Enrolment No:**


Course: CHEG 235 – Chemical Process Calculations Programme: B.Tech (APE)Gas & B.Tech CE+RP Semester: ODD-2017-18 (III Semester) Max. Marks:100

Instructions:

Time: 03 hrs.

Attempt all questions from Section A (each carrying 12 marks); and all questions from Section B (each carrying 20 marks);

	Section A (attempt all)			
1.	 A gaseous mixture of 1500 L/s has the following composition :CH₄-15%, C₂H₆-25% and H₂-60% (all by volume) at 35°C and 2300 mm Hg gauge, calculate, a) the moles of each component b) the concentration of each component in gm mol/cc c) the partial pressure of each component d) the molar density of the mixture e) the mass flow rate of the mixture f) the average molecular weight of the gas 	[12]	CO2	
2.	A feed mixture consisting of 60% ethylene, 3% inerts and 37% water is sent to the reactor. The products analyzed 53.89% ethylene, 14.37 % ethanol, 1.80% ether, 26.35% water and 3.59% inerts. Calculate the conversion of ethylene, yield of ethanol and ether based on ethylene.	[12]	CO3	
3.	The dry bulb temperature and dew point of ambient air were found to be 302 K and 291 K respectively. The barometer reads 100.0 kPa absolute. The vapor pressure of water at dew point is 2.0624 kPa. Compute (a) the absolute molar humidity (b) the absolute humidity (c) the % RH, (d) the % saturation, (e) the humid heat, (f) the humid volume.	[12]	CO4	
4.	The following data were obtained in a test on coal fired steam generator. The ultimate analysis of coal: C, 80.5; H, 4.6%; O, 5.0%; N, 1.1. %; ash, 8.8%. No carbon is lost in the refuse. The Orsat analysis of flue gas: CO ₂ , 16.4%; O ₂ , 2.3%; CO, 0.4%; N ₂ , 80.9%. Calculate: a)The weight of dry gaseous products formed per 100 kg of coal fired b) The percent excess air supplied for combustion	[12]	C05	
5.	Pure naphthalene is fed to a jacketed heater at 32°C and is vaporized at atmospheric pressure by condensing Dowtherm-A vapors in a jacket at 1.15 kg/m ² (T _{sat} =260°C and latent heat of vaporization is 68.6 kcal/kg). Assume no subcooling of vapors. Calculate the quantity of Dowtherm-A condensed per 10 kg of naphthalene evaporated. Boiling point: 218°C Melting point: 80°C Latent Heat of Vaporization: 75.5 kcal/kg	[12]	CO6	

N2: 29.5909-5.141 x 10-3T+13.1829 x10-6T2-4.968 x 10-9T3	
or	
A continuous fractionating column at 1 atm is to be used to separate 15000 kg/h of a	
solution of benzene and toluene containing 50 weight % benzene into an overhead	
product containing 96 weight % benzene and a bottom product containing 97 weight %	
toluene. The feed will be at its boiling point and a reflux ratio of 2.5 kg of reflux per kg	
of distillate or product is to be used. Calculate the condenser and reboiler heat load.	
Enthalpy of feed=170.8 kJ/kg	
Enthalpy of reflux liquid=67 kJ/kg	
Enthalpy of vapor leaving the column and entering the condenser=540 kJ/kg	
Enthalpy of liquid leaving the reboiler=201.8 kJ/kg	

