UPES

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES

End Semester Examination, December 2017

Program: MTECH IN STRUCTURAL ENGINEERING
Subject (Course): STRUCTURAL DYNAMICS
Course Code : CIVL 7006

Semester - I
Max. Marks : 100
Duration : 3 Hrs

No. of page/s: 5

SECTION -A

ALL QUESTIONS ARE COMPULSORY FOR SECTION -A

Q1	For the given Dynamic Response Factor (Amplitude Ratio of Receiver to transmitter) vs Frequency of a system, determine the damping ratio of the system by using Half Power Bandwidth method.	$\begin{array}{\|l} \hline 5 \\ \text { Marks } \end{array}$	CO 4
Q2	Develop the equation of motion of the system in figure. The rod is made of an elastic material with modulus of elasticity E , its cross sectional area is A and its length is L . Ignore the mass of the rod and measure u from the static equilibrium position.	$\begin{aligned} & \hline 5 \\ & \text { Marks } \end{aligned}$	CO 1

SECTION -B

ALL QUESTIONS ARE COMPULSORY FOR SECTION -B

Q5	A free vibration test is conducted on an empty elevated water tank such as the one in figure. A cable attached to the tank applies a lateral (Horizontal) force of 16.4 kips and pulls the tank horizontally by 2 in . The cable is suddenly cut and the resulting free vibration is recorded. At the end of four complete cycles, the time is 2.0 seconds and the amplitude is 1 in . From these data compute the following: (a) damping ratio (b) natural period of undamped vibration (c) stiffness (d) weight (e) damping coefficient and (f) number of cycles required for displacement amplitude to decrease to 0.2 in.	$\begin{aligned} & \hline 10 \\ & \text { Marks } \end{aligned}$	$\begin{aligned} & \mathrm{CO} 1 \\ & \& \\ & \mathrm{CO} 4 \end{aligned}$
Q6	A SDOF system having mass m , stiffness k and damping ratio ζ, is subjected to a periodic loading as shown in figure defined by $\begin{array}{rl} \mathrm{P}(\mathrm{t})=\mathrm{p}_{\mathrm{o}} & 0<=\mathrm{t}<=\mathrm{T}_{\mathrm{o}} / 2 \\ -\mathrm{p}_{\mathrm{o}} & \mathrm{~T}_{\mathrm{o}} / 2<=\mathrm{t}<=\mathrm{T}_{\mathrm{o}} \end{array}$	10 Marks	CO 2

Q7	The SDOF system model with all parameters shown in figure of an automobile is running over the speed hump shown in figure at velocity v. Determine the maximum force developed in the suspension spring and the maximum acceleration of mass if a) $\mathrm{v}=5 \mathrm{mph}=7.333 \mathrm{ft} / \mathrm{sec}$ and b$) \mathrm{v}=10 \mathrm{mph}=14.666 \mathrm{ft} / \mathrm{sec}$. Shock spectra for a half cycle sine pulse is given.	10 Marks	CO 2
Q8	A 12 ft long vertical cantilever, a 4in nominal diameter standard pipe, supports a 5200 lb weight attached at the tip is shown in figure. The properties of the pipe are outside diameter 4.5 in and inside diameter 4.026 in, thickness 0.237 in and second moment of inertia $7.23 \mathrm{in}^{4}$, elastic modulus $\mathrm{E}=2900 \mathrm{ksi}$ and weight $10.79 \mathrm{lb} / \mathrm{ft}$. Determine the peak deformation and bending stress in the cantilever due to the El Centro ground motion. Assume that $\zeta=2 \%$.	10 Marks	$\begin{aligned} & \mathrm{CO} 2 \\ & \& \\ & \mathrm{CO} 4 \end{aligned}$

(200

SECTION -C

ALL QUESTIONS ARE COMPULSORY FOR SECTION -C
Q9 \quad Determine the natural frequencies and modes of the system shown in figure with all the parameters a two story frame idealized as a shear building. Also normalize the modes so

$\begin{aligned} & \mathrm{Q} 1 \\ & \mathbf{0} \end{aligned}$	Formulate the equation of motion for MDOF system shown in the figure. Also find the natural frequencies. Given $\mathrm{m}_{1}=2 \mathrm{~m}, \mathrm{~m}_{2}=5 \mathrm{~m}, \mathrm{k}_{1}=3 \mathrm{k}, \mathrm{k}_{2}=5 \mathrm{k}, \mathrm{c}_{1}=2 \mathrm{c}$ and $\mathrm{c}_{2}=\mathrm{c}$. OR For rigid body system shown in figure: a) Formulate the equation of motion governing the rotation at O . b) Determine the natural frequency and damping ratio.	20 Mark s	$\begin{array}{\|l\|} \hline \text { CO } \\ 3 \& \\ \text { CO } \\ 2 \end{array}$

