Roll No: -----

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES

End Semester Examination, December 2017

Program: MTECH IN STRUCTURAL ENGINEERING Subject (Course): STRUCTURAL DYNAMICS Course Code : CIVL 7006 No. of page/s: 5

Semester – I Max. Marks : 100 Duration : 3 Hrs

model from the acceleration period vibration shown in table.MarksPeakTime, ti (sec)Peak, üi (g)11.1100.915113.8440.076			L M M $-$ $p(t)$	Fu		
PeakTime, ti (sec)Peak, $\ddot{u}_i(g)$ 11.1100.915113.8440.076Q4A sensitive instrument with weight 100 lb (i.e mass = $100/g= 100/396$) is to be installed at a location where the vertical acceleration is 0.1 g at a frequency of 10 Hz.5 Marks	Q3					CO 1
113.8440.076Q4A sensitive instrument with weight 100 lb (i.e mass = 100/g= 100/396) is to be installed at a location where the vertical acceleration is 0.1 g at a frequency of 10 Hz.5 Marks			Time, t _i (sec)	Peak, ü _i (g)		
Q4A sensitive instrument with weight 100 lb (i.e mass = 100/g= 100/396) is to be installed at a location where the vertical acceleration is 0.1 g at a frequency of 10 Hz.5 MarksCO						
installed at a location where the vertical acceleration is 0.1 g at a frequency of 10 Hz. Marks	04				5	CO 1
the system is 10 %. What acceleration is transmitted to the instrument?	יע	installed at a location where the The instrument is mounted on	Hz. Marks			

SECTION -B ALL QUESTIONS ARE COMPULSORY FOR SECTION -B

Q5	A free vibration test is conducted on an empty elevated water tank such as the one in	10	CO 1				
	figure. A cable attached to the tank applies a lateral (Horizontal) force of 16.4 kips	Marks	&				
	and pulls the tank horizontally by 2 in. The cable is suddenly cut and the resulting free		CO 4				
	vibration is recorded. At the end of four complete cycles, the time is 2.0 seconds and						
	the amplitude is 1 in. From these data compute the following: (a) damping ratio (b)						
	natural period of undamped vibration (c) stiffness (d) weight (e) damping coefficient						
	and (f) number of cycles required for displacement amplitude to decrease to 0.2 in.						
Q6	A SDOF system having mass m, stiffness k and damping ratio ζ , is subjected to a	10	CO 2				
_	periodic loading as shown in figure defined by	Marks					
	$P(t) = p_0$ $0 \le t \le T_0/2$						
	$-p_{o}$ $T_{o}/2 <= t <= T_{o}$						

SECTION -C ALL QUESTIONS ARE COMPULSORY FOR SECTION -C

Q9	Determine the natural frequencies and modes of the system shown in figure with all the		CO
	parameters a two story frame idealized as a shear building. Also normalize the modes so		3
	that $M_n = 1$. Also draw the mode shapes.	S	

