Name: Enrolm	Name: Enrolment No:			
	End Semester Examination, December 2017			
Due	Course: MATH 1001– Mathematics I			
0	mme: B.Tech All SoE Branches er: I (ODD-2017-18)			
Time: (Max. Ma	arks:100	
Instruc		<i></i> 	< 1	
-	t all questions from Section A (each carrying 4 marks); attempt all questions from Se (8 marks); attempt all questions from Section C (each carrying 20 marks).	ection B	(each	
carrying	s marks); attempt an questions from Section C (each carrying 20 marks). Section A			
	(Attempt all questions)			
	Find the eigen values of the following matrix.			
1.	$A = \begin{vmatrix} -2 & -3 & -4 \end{vmatrix}$	[4]	CO1	
	$A = \begin{bmatrix} 3 & 10 & 5 \\ -2 & -3 & -4 \\ 3 & 5 & 7 \end{bmatrix}$			
	Examine whether the following set of vectors is linearly independent.			
2.	(1,2,3,4), (2,0,1,-2), (3,2,4,2).	[4]	CO1	
2	Using double integration, find the area of the region bounded by the curve	E 4 1	CO3	
3.	xy = 16 and the lines $y = x, y = 0$ and $x = 8$.	[4]	CO3	
4.	If $u = u(y - z, z - x, x - y)$, prove that $\frac{\partial u}{\partial x} + \frac{\partial u}{\partial y} + \frac{\partial u}{\partial z} = 0$.	[4]	CO2	
	If x increases at the rate of $2 cm/sec$ at the instant when $x = 3cm$ and $y = 1cm$,			
5.	at what rate must y be changing in order that the function $2xy-3x^2y$ shall be	[4]	CO2	
J.	neither increasing nor decreasing?	L - J		
	SECTION B			
	(Q6-Q10 are compulsory and Q10 has internal choice)			
6.	Using concept of curve tracing, draw the sketch of the curve	[8]	CO2	
	$y^{2}(a-x) = x^{2}(a+x), a > 0.$	[0]	0.01	
7.	Find by triple integration, the volume of the paraboloid of revolution	[8]	CO3	
	$x^2 + y^2 = 4z$ cut off by the plane $z = 4$.			
8.	If $y^{\frac{1}{m}} + y^{-\frac{1}{m}} = 2x$, prove that $(x^2 - 1)y_{n+2} + (2n+1)xy_{n+1} + (n^2 - m^2)y_n = 0$.	[8]	CO2	
	If $f(x, y)$ and $\phi(x, y)$ are homogeneous function of x, y of degree p and q			
9.	respectively and $u = f(x, y) + \phi(x, y)$, show that	-0-	~ ~ ~	
	$f(x, y) = \frac{1}{p(p-q)} \left[x^2 \frac{\partial^2 u}{\partial x^2} + 2xy \frac{\partial^2 u}{\partial x \partial y} + y^2 \frac{\partial^2 u}{\partial y^2} \right] - \frac{(q-1)}{p(p-q)} \left[x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y} \right].$	[8]	CO2	

10.	If $A = \begin{bmatrix} 1 & 0 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix}$, then show that $A^n = A^{n-2} + A^2 - I$ for $n \ge 3$. Hence find A^{100} . OR Find the matrix P that transforms the matrix $A = \begin{bmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{bmatrix}$ to the diagonal form. Hence evaluate A^8 .	[8]	CO1
	SECTION C (Q11 is compulsory and Q12A, Q12B have internal choice)		
11(A).	Evaluate the following integral by changing to polar co-ordinates:	[10]	CO3
11(B).	Expand the function $f(x) = x \sin x$ as a Fourier series in the interval $-\pi \le x \le \pi$.	[10]	CO4
12(A).	Apply Dirichlet's theorem to find the volume of the solid surrounded by the surface $\left(\frac{x}{a}\right)^{\frac{2}{3}} + \left(\frac{y}{b}\right)^{\frac{2}{3}} + \left(\frac{z}{c}\right)^{\frac{2}{3}} = 1.$ OR Let $\beta(p,q)$ represents beta function for $p, q > 0$, then show that $\beta(p,q) = \int_{0}^{\infty} \frac{y^{q-1}}{(1+y)^{p+q}} dy = \int_{0}^{1} \frac{x^{p-1} + x^{q-1}}{(1+x)^{p+q}} dx$	[10]	CO3
12(B).	Find the Fourier series corresponding to the function $f(x)$ defined in (-2, 2) as follows: $f(x) = \begin{cases} 2 & in & -2 < x \le 0 \\ x & in & 0 < x < 2. \end{cases}$ OR Find the half-range sine series of the function $f(x) = e^{ax}$ for $0 < x < \pi$.	[10]	CO4

Name: Enrolment No:							
End Semester Examination, December 2017							
	Course: MATH 1001– Mathematics I						
0	amme: B.Tech All SoE Branches ster: I (ODD-2017-18)						
	03 hrs.	J	Max. Marks:100				
	ictions:	ring (marks); attempt all quastions from S	nation D (aaah			
	ig 8 marks); attempt all questions from Section A	ving 4 marks); attempt all questions from Section C (each carrying 20 marks).	cuon d (each			
		Section A					
	(Atter	mpt all questions)					
1.	Find the value of k , for which the rank of	the matrix $\begin{bmatrix} 1 & 1 & 3 \\ 2 & 3 & 1 \\ 3 & 1 & k \end{bmatrix}$ is at most 2.	[4]	CO1			
2.	Using Cayley Hamilton theorem find A^8 ,	where $A = \begin{bmatrix} 1 & 2 \\ 2 & -1 \end{bmatrix}$.	[4]	CO1			
3.	Compute $\frac{\Gamma\left(-\frac{5}{2}\right)}{\Gamma\left(\frac{5}{2}\right)}$.		[4]	CO3			
4.	functionally dependent, find the relation b (Note that, cos	$h^2 \theta - \sinh^2 \theta = 1)$	[4]	CO2			
5.	$u = x^{2}e^{-y}\cosh z, v = x^{2}$ If $z = xy f\left(\frac{y}{x}\right)$, show that $x\frac{\partial z}{\partial x} + y\frac{\partial z}{\partial y} = \frac{f'\left(\frac{y}{x}\right)}{f\left(\frac{y}{x}\right)} = \frac{f'\left(\frac{y}{x}\right)}{f\left(\frac{y}{x}\right)} = \frac{f'(\frac{y}{x})}{f\left(\frac{y}{x}\right)}$	2z. Also, show that if z is a constant, then $\frac{x\{y+x\frac{dy}{dx}\}}{y\{y-x\frac{dy}{dx}\}}$	[4]	CO2			
SECTION B							
	(Q6-Q9 are compulso	ory and Q10 has internal choice)					
6.	Trace the curve $y^2(2-x) = x^3$.		[8]	CO2			
	Evaluate the integral:						
7.	$\int_{0}^{1}\int_{y}^{y^{\frac{1}{3}}}e^{x}$	$dx^2 dx dy$	[8]	CO3			
8.	Evaluate $\frac{\partial(u,v,w)}{\partial(x,y,z)}$, where u + v + w = uv + vw + wu	= x + y + z $= x2 + y2 + z2$	[8]	CO2			
	$uv + vw + wu = \frac{1}{3}(x^3)$	$y^3 + y^3 + z^3$).					

9.	Find the asymptotes of the curve $y = \frac{3x}{2} \log_e \left(e - \frac{1}{3x} \right)$.	[8]	CO2			
10.	Diagonalize the matrix $A = \begin{pmatrix} 1 & -3 & 3 \\ 3 & -5 & 3 \\ 6 & -6 & 4 \end{pmatrix}$.					
	OR	[8]	CO1			
	Examine whether the vectors $v_1 = (1,1,1,1)$, $v_2 = (0,1,1,1)$, $v_3 = (0,0,1,1)$ and $v_4 = (0,0,0,1)$ are linearly dependent or not. If dependent, find the relation between them.					
	SECTION C (Q11 is compulsory and Q12A, Q12B have internal choice)					
	(Q11 is compuisory and Q12/1, Q12D have internal choice)	Γ				
11.A	Using Beta-Gamma function evaluate $\int_0^1 t^2 (1-t^4)^{-\frac{1}{2}} dt \times \int_0^1 (1+t^4)^{-\frac{1}{2}} dt$.	[10]	CO3			
11 D	Expand $f(x)$ in Fourier series on $-\pi < x < \pi$ if	[10]	CO4			
11.B	$f(x) = \begin{cases} 0, & for - \pi < x < 0 \\ \pi, & for \ 0 < x < \pi. \end{cases}$	[10]	CO4			
	Find the volume of the solid under the surface $bz = x^2 + y^2$, and whose base <i>R</i> is the circle $x^2 + y^2 = b^2$.					
12.A	OR	[10]	CO3			
12.11	Find the area of the region enclosed by the curve $\left(\frac{x}{a}\right)^{\alpha} + \left(\frac{y}{b}\right)^{\beta} = 1$ in first	[*•]	0.00			
	quadrant, where α , $\beta > 0$.					
	Find a Fourier series of $f(x) = x$ on the closed interval $0 \le x \le \pi$. Hence deduce that $\frac{1}{1^2} + \frac{1}{3^2} + \frac{1}{5^2} + \dots = \frac{\pi^2}{8}$.					
	$\operatorname{OR}^{\operatorname{III}} = \frac{1}{3^2} + \frac{1}{3^2} + \frac{1}{5^2} + \cdots = \frac{1}{8}.$					
12.B	Find the Fourier series of $f(x)$ on the closed interval $-1 < x \le 1$, where $f(x) = \begin{cases} x, for - 1 < x \le 0\\ x + 2, for \ 0 < x \le 1. \end{cases}$	[10]	CO4			
	Deduce that $\frac{\pi}{4} = 1 - \frac{1}{3} + \frac{1}{5} - \frac{1}{7} + \cdots$.					