Name:
Enrolment No:

ĹUPES

End Semester Examination, December 2017
 Course: MATH 1001- Mathematics I

Programme: B.Tech.- All SoE Branches

Semester: I (ODD-2017-18)

Time: 03 hrs.
Max. Marks: 100

Instructions:

Attempt all questions from Section A (each carrying 4 marks); attempt all questions from Section B (each carrying 8 marks); attempt all questions from Section C (each carrying 20 marks).

Section A

(Attempt all questions)

1.	Find the eigen values of the following matrix. $A=\left[\begin{array}{ccc} 3 & 10 & 5 \\ -2 & -3 & -4 \\ 3 & 5 & 7 \end{array}\right]$	[4]	CO1
2.	Examine whether the following set of vectors is linearly independent. $(1,2,3,4),(2,0,1,-2),(3,2,4,2)$	[4]	CO1
3.	Using double integration, find the area of the region bounded by the curve $x y=16$ and the lines $y=x, y=0$ and $x=8$.	[4]	CO3
4.	If $u=u(y-z, z-x, x-y)$, prove that $\frac{\partial u}{\partial x}+\frac{\partial u}{\partial y}+\frac{\partial u}{\partial z}=0$.	[4]	CO2
5.	If x increases at the rate of $2 \mathrm{~cm} / \mathrm{sec}$ at the instant when $x=3 \mathrm{~cm}$ and $y=1 \mathrm{~cm}$, at what rate must y be changing in order that the function $2 x y-3 x^{2} y$ shall be neither increasing nor decreasing?	[4]	CO2
SECTION B(Q6-Q10 are compulsory and Q10 has internal choice)			
6.	Using concept of curve tracing, draw the sketch of the curve $y^{2}(a-x)=x^{2}(a+x), a>0$.	[8]	CO2
7.	Find by triple integration, the volume of the paraboloid of revolution $x^{2}+y^{2}=4 z$ cut off by the plane $z=4$.	[8]	CO3
8.	If $y^{\frac{1}{m}}+y^{-\frac{1}{m}}=2 x$, prove that $\left(x^{2}-1\right) y_{n+2}+(2 n+1) x y_{n+1}+\left(n^{2}-m^{2}\right) y_{n}=0$.	[8]	CO2
9.	If $f(x, y)$ and $\phi(x, y)$ are homogeneous function of x, y of degree p and q respectively and $u=f(x, y)+\phi(x, y)$, show that $f(x, y)=\frac{1}{p(p-q)}\left[x^{2} \frac{\partial^{2} u}{\partial x^{2}}+2 x y \frac{\partial^{2} u}{\partial x \partial y}+y^{2} \frac{\partial^{2} u}{\partial y^{2}}\right]-\frac{(q-1)}{p(p-q)}\left[x \frac{\partial u}{\partial x}+y \frac{\partial u}{\partial y}\right]$	[8]	CO2

10.	If $A=\left[\begin{array}{lll}1 & 0 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 0\end{array}\right]$, then show that $A^{n}=A^{n-2}+A^{2}-I$ for $n \geq 3$. Hence find A^{100}. OR Find the matrix P that transforms the matrix $A=\left[\begin{array}{lll}0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0\end{array}\right]$ to the diagonal form. Hence evaluate A^{8}.	[8]	CO1
	SECTION C (Q11 is compulsory and Q12A, Q12B have internal choice)		
11(A).	Evaluate the following integral by changing to polar co-ordinates: $\int_{0}^{2} \int_{0}^{\sqrt{2 x-x^{2}}} \frac{x}{x^{2}+y^{2}} d y d x$	[10]	$\mathrm{CO3}$
11(B).	Expand the function $f(x)=x \sin x$ as a Fourier series in the interval $-\pi \leq x \leq \pi$.	[10]	$\mathrm{CO4}$
12(A).	Apply Dirichlet's theorem to find the volume of the solid surrounded by the surface $\left(\frac{x}{a}\right)^{\frac{2}{3}}+\left(\frac{y}{b}\right)^{\frac{2}{3}}+\left(\frac{z}{c}\right)^{\frac{2}{3}}=1$ OR Let $\beta(p, q)$ represents beta function for $p, q>0$, then show that $\beta(p, q)=\int_{0}^{\infty} \frac{y^{q-1}}{(1+y)^{p+q}} d y=\int_{0}^{1} \frac{x^{p-1}+x^{q-1}}{(1+x)^{p+q}} d x$	[10]	$\mathrm{CO3}$
12(B).	Find the Fourier series corresponding to the function $f(x)$ defined in $(-2,2)$ as follows: $f(x)=\left\{\begin{array}{llc} 2 & \text { in } & -2<x \leq 0 \\ x & \text { in } & 0<x<2 \end{array}\right.$ OR Find the half-range sine series of the function $f(x)=e^{a x} \quad \text { for } \quad 0<x<\pi$	[10]	$\mathrm{CO4}$

Name:
 Enrolment No:
 Lu UPES

End Semester Examination, December 2017

Course: MATH 1001- Mathematics I

Programme: B.Tech.- All SoE Branches

Semester: I (ODD-2017-18)
Time: 03 hrs.

Instructions:

Attempt all questions from Section A (each carrying 4 marks); attempt all questions from Section \mathbf{B} (each carrying 8 marks); attempt all questions from Section C (each carrying 20 marks).

Section A
(Attempt all questions)

1.	Find the value of k, for which the rank of the matrix $\left[\begin{array}{lll}1 & 1 & 3 \\ 2 & 3 & 1 \\ 3 & 1 & k\end{array}\right]$ is at most 2.	[4]	CO1
2.	Using Cayley Hamilton theorem find A^{8}, where $A=\left[\begin{array}{cc}1 & 2 \\ 2 & -1\end{array}\right]$.	[4]	CO1
3.	Compute $\frac{\Gamma\left(-\frac{5}{2}\right)}{\Gamma\left(\frac{5}{2}\right)}$.	[4]	CO 3
4.	Determine the following functions u, v and w, are functionally dependent or not. If functionally dependent, find the relation between them. (Note that, $\cosh ^{2} \theta-\sinh ^{2} \theta=1$) $u=x^{2} e^{-y} \cosh z, v=x^{2} e^{-y} \sinh z, w=3 x^{4} e^{-2 y}$	[4]	CO 2
5.	If $z=x y f\left(\frac{y}{x}\right)$, show that $x \frac{\partial z}{\partial x}+y \frac{\partial z}{\partial y}=2 z$. Also, show that if z is a constant, then $\frac{f^{\prime}\left(\frac{y}{x}\right)}{f\left(\frac{y}{x}\right)}=\frac{x\left\{y+x+\frac{d y}{d x}\right\}}{y\left\{y-x \frac{d y}{d x}\right\}} .$	[4]	CO 2

SECTION B

(Q6-Q9 are compulsory and Q10 has internal choice)

6.	Trace the curve $y^{2}(2-x)=x^{3}$.	[8]	CO2
7.	Evaluate the integral: $\int_{0}^{1} \int_{y}^{y^{\frac{1}{3}}} e^{x^{2}} d x d y$	[8]	CO 3
8.	Evaluate $\frac{\partial(u, v, w)}{\partial(x, y, z)}$, where $\begin{gathered} u+v+w=x+y+z \\ u v+v w+w u=x^{2}+y^{2}+z^{2} \\ u v w=\frac{1}{3}\left(x^{3}+y^{3}+z^{3}\right) \end{gathered}$	[8]	CO 2

9.	Find the asymptotes of the curve $y=\frac{3 x}{2} \log _{e}\left(e-\frac{1}{3 x}\right)$.	[8]	CO2
10.	Diagonalize the matrix $A=\left(\begin{array}{lll}1 & -3 & 3 \\ 3 & -5 & 3 \\ 6 & -6 & 4\end{array}\right)$. OR Examine whether the vectors $v_{1}=(1,1,1,1), v_{2}=(0,1,1,1), v_{3}=(0,0,1,1)$ and $v_{4}=(0,0,0,1)$ are linearly dependent or not. If dependent, find the relation between them.	[8]	CO1
SECTION C(Q11 is compulsory and Q12A, Q12B have internal choice)			
11.A	Using Beta-Gamma function evaluate $\int_{0}^{1} t^{2}\left(1-t^{4}\right)^{-\frac{1}{2}} d t \times \int_{0}^{1}\left(1+t^{4}\right)^{-\frac{1}{2}} d t$.	[10]	CO 3
11.B	$\begin{aligned} & \text { Expand } f(x) \text { in Fourier series on }-\pi<x<\pi \text { if } \\ & \qquad f(x)= \begin{cases}0, & \text { for }-\pi<x<0 \\ \pi, & \text { for } 0<x<\pi .\end{cases} \end{aligned}$	[10]	CO4
12.A	Find the volume of the solid under the surface $b z=x^{2}+y^{2}$, and whose base R is the circle $x^{2}+y^{2}=b^{2}$. OR Find the area of the region enclosed by the curve $\left(\frac{x}{a}\right)^{\alpha}+\left(\frac{y}{b}\right)^{\beta}=1$ in first quadrant, where $\alpha, \beta>0$.	[10]	CO 3
12.B	Find a Fourier series of $f(x)=x$ on the closed interval $0 \leq x \leq \pi$. Hence deduce that $\frac{1}{1^{2}}+\frac{1}{3^{2}}+\frac{1}{5^{2}}+\cdots=\frac{\pi^{2}}{8}$. OR Find the Fourier series of $f(x)$ on the closed interval $-1<x \leq 1$, where $f(x)=\left\{\begin{array}{c} x, \text { for }-1<x \leq 0 \\ x+2, \text { for } 0<x \leq 1 \end{array}\right.$ Deduce that $\frac{\pi}{4}=1-\frac{1}{3}+\frac{1}{5}-\frac{1}{7}+\cdots$.	[10]	CO 4

