Namo Enro	e: olment No:	UPES		
	END SEMESTER EXAMINATION, DE			
Prog	Course: MATH 1002-Mathen gramme: B. Tech. (All SCE Branches)	latics-1		
	ester: I (ODD-2017-18)		100	
Time	Time: 03 hrs. M		Aax. Marks:100	
Atten	ructions: npt all questions from Section A (each carrying 4 marks); atter ing 8 marks); attempt all questions from Section C (each carry	1 1	ach	
	Section A (Attempt all questions)			
	Show that the system of equations			
1.	x + y + z = -3, 3x + y - 2z = -2, 2x + 4y + 7z = 7 is n	ot consistent. [4]	CO 3	
2.	Show that the set of vectors [1, 1, 0], [1, 0, 1], [0, 1, 1] are line	early independent. [4]	CO 3	
3.	Construct a truth table for the proposition $\sim (p \lor q) \lor (\sim p \land q)$	~ <i>q</i>). [4]	CO 2	
4.	Find n th derivative of $sin^2 x cos^3 x$.	[4]	CO 1	
5.	Evaluate $\int_0^4 \int_0^{2\sqrt{z}} \int_0^{\sqrt{4z-x^2}} dy dx dz.$	[4]	CO 1	
	SECTION B		1	
	(Q6-Q9 are compulsory and Q10 has in		-	
6.	Using Cayley Hamilton theorem find the inverse of the matrix $A = \begin{bmatrix} 2 & -1 & 1 \\ -1 & 2 & -1 \\ 1 & -1 & 2 \end{bmatrix}.$	IX [8]	CO 3	
7.	Show that <i>t</i> is a valid conclusion from the premises		- 5	
	$p \rightarrow q$, $q \rightarrow r$, $r \rightarrow s$, $\sim s$ and $p \lor t$.	[8]	CO 2	
8.	Divide 120 into three parts so that the sum of their products the shall be maximum.	aken two at a time [8]	CO 1	
9.	Show that the set $G = \{1, -1, i, -i\}$, where <i>i</i> is a fourth r with respect to multiplication.	oot of unity is a group [8]	CO 4	

10.	determine $o(x^{13})$ where o denotes the order. OR Let $U(n)$ be a group defined as $U(n) = \{m \in N: 1 \le m \le n \text{ and } gcd (m, n) = 1\}$. Is $U(8)$ isomorphic to $U(12)$? Justify your answer.		CO 4
	SECTION C (Q11 is compulsory and Q12A, Q12B have internal choice)		
11.A	Evaluate $\iint \frac{x^2 y^2}{x^2 + y^2} dx dy$ by changing it to polar co-ordinates over the annular region between circles $x^2 + y^2 = a^2$ and $x^2 + y^2 = b^2$; $a > b > 0$.	[10]	CO 1
11.B	Let G be the group of integers under addition and let N be the set of all integral multiples of 3. Prove that N is a subgroup of G and determine all the cosets of N in G .		CO 4
12.A	Is the matrix $\begin{bmatrix} 1 & 2 & 2 \\ 0 & 2 & 1 \\ -1 & 2 & 2 \end{bmatrix}$ diagonalizable? Justify your answer. OR Given that $A = \begin{bmatrix} a & b & c \\ b & c & a \\ c & a & b \end{bmatrix}$ where a, b, c are roots of $x^3 + x^2 + k = 0$ (k is a constant). Prove that A is orthogonal.	[10]	CO 3
12.B	Find the order of each element in the cyclic group $G = \{a, a^2, a^3, a^4, a^5, a^6 = e\}$ where <i>e</i> being the identity element. OR	[10]	CO 4
	Show that the set <i>R</i> of real numbers is a commutative ring with unity with respect to addition and multiplication of real numbers.		

Namo Enro	e: Iment No:	UPES		
Seme		EXAMINATION-2017 1002-Mathematics-I Max. Ma	arks:100	
Atten	uctions: npt all questions from Section A (each carrying ing 8 marks); attempt all questions from Sectior	4 marks); attempt all questions from Section B C (each carrying 20 marks).	(each	
	Sec	ction A		
1.	Find the rank of the matrix $\begin{bmatrix} 5 & 3 & 14 & 4 \\ 0 & 1 & 2 & 1 \\ 1 & -1 & 2 & 0 \end{bmatrix}$	by reducing it to Echelon form. [4]	CO 3	
2.	Using Cayley Hamilton Theorem find the involution $A = \begin{bmatrix} 2 & -1 \\ -1 & 2 \\ 1 & -1 \end{bmatrix}$	erse of the matrix	CO 3	
3.	Verify that the proposition $p \land (q \land \sim p)$ is a constraint of the proposition $p \land (q \land \sim p)$ is a constra	contradiction. [4]	CO 2	
4.	Find n th derivative of $\frac{ax+b}{cx+d}$ with respect to x. Evaluate $\int_0^1 \int_0^{x^2} \int_0^{x+y} (x-2y+z) dz dy dx$.	[4]	CO 1	
5.	Evaluate $\int_{0}^{1} \int_{0}^{x^{2}} \int_{0}^{x+y} (x-2y+z) dz dy dx.$	[4]	CO 1	
		TION B and Q10 has internal choice)	3	
6.	Determine the values of λ and μ such that the $2x - 5y + 2z = 8$, $2x + 4y + 6z = 5$, $x + 4x + 6z = 5$, $x + 6z = 5$	$2y + \lambda z = \mu $ [8]	CO 3	
7.	Show that <i>s</i> is a valid conclusion from the pre $p \rightarrow q$, $p \rightarrow r$, $\sim (q \land r)$ and $s \lor p$		CO 2	
8.	Find the shortest distance between the lines $\frac{x-3}{1} = \frac{y-5}{-2} = \frac{z-7}{1} \text{ and } \frac{x+1}{7} = \frac{y+1}{-6} = \frac{z+1}{1}$	[8]	CO 1	

9.	Show that the set $G = \{1, \omega, \omega^2\}$ where ω is an imaginary cube root of unity is a group with respect to multiplication.		CO 4
	If x is an element of a cyclic group of order 21 and two of x^3 , x^5 and x^9 are equal, determine $o(x^{19})$ where o denote the order.		
10.	OR Consider the elements $A = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}$ and $B = \begin{bmatrix} 0 & 1 \\ -1 & -1 \end{bmatrix}$ from a group <i>G</i> with respect to matrix multiplication. Find $o(A)$, $o(B)$, $o(AB)$, where o denote the order.	[8]	CO 4
	SECTION C (Q11 is compulsory and Q12A, Q12B have internal choice)	L	1
11.A	Evaluate $\iint \frac{1}{\sqrt{xy}} dx dy$ by changing it to polar coordinates, over the region of integration bounded by $x^2 + y^2 - x = 0$ and $y \ge 0$.	[10]	CO 1
11.B	Prove that the set $G = \{1, 2, 3, 4, 5, 6\}$ is a finite abelian group of order 6 with respect to multiplication modulo 7.		CO 4
12.A	Is the matrix $\begin{bmatrix} 8 & -6 & 2 \\ -6 & 7 & -4 \\ 2 & -4 & 3 \end{bmatrix}$ diagonalizable? Justify your answer? OR The Eigen vectors of a 3 × 3 matrix <i>A</i> corresponding to eigen values 1, 1, 3 are $[1, 0, -1]^T$; $[0, 1, -1]^T$ and $[1, 1, 0]^T$ respectively, find the matrix <i>A</i> .	[10]	CO 3
12.B	Find the inverse of the following permutations:: (i) $\begin{pmatrix} 1 & 2 & 3 & 4 \\ 1 & 3 & 4 & 2 \end{pmatrix}$ (ii) $\begin{pmatrix} 1 & 2 & 3 & 4 \\ 3 & 4 & 1 & 2 \end{pmatrix}$ (iii) $\begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 2 & 3 & 1 & 5 & 4 \end{pmatrix}$ Also determine which of the following are even permutations: a. $g = (1 \ 2 \ 3 \ 4 \ 5)(1 \ 2 \ 3)(4 \ 5)$ b. $h = (1 \ 2)(1 \ 3)(5 \ 6 \ 7)$ OR Show that the set Q of rational numbers is a commutative ring with unity with respect to addition and multiplication of real numbers.	[10]	CO 4