Name: Enrolment No:			
END SEMESTER EXAMINATION, DECEMBER 2017 Course: MATH 1002-Mathematics-I Programme: B. Tech. (All SCE Branches) Semester: I (ODD-2017-18) Time: 03 hrs. Instructions: Attempt all questions from Section A (each carrying 4 marks); attempt all questions from Section B (each carrying 8 marks); attempt all questions from Section C (each carrying 20 marks).			
Section A(Attempt all questions)			
1.	Show that the system of equations $x+y+z=-3,3 x+y-2 z=-2,2 x+4 y+7 z=7$ is not consistent.	[4]	CO 3
2.	Show that the set of vectors $[1,1,0],[1,0,1],[0,1,1]$ are linearly independent.	[4]	CO 3
3.	Construct a truth table for the proposition $\sim(p \vee q) \vee(\sim p \wedge \sim q)$.	[4]	CO 2
4.	Find $\mathrm{n}^{\text {th }}$ derivative of $\sin ^{2} x \cos ^{3} x$.	[4]	CO 1
5.	Evaluate $\int_{0}^{4} \int_{0}^{2 \sqrt{z}} \int_{0}^{\sqrt{4 z-x^{2}}} d y d x d z$.	[4]	CO 1
SECTION B(Q6-Q9 are compulsory and Q10 has internal choice)			
6.	Using Cayley Hamilton theorem find the inverse of the matrix $A=\left[\begin{array}{ccc} 2 & -1 & 1 \\ -1 & 2 & -1 \\ 1 & -1 & 2 \end{array}\right]$	[8]	CO 3
7.	Show that t is a valid conclusion from the premises $p \rightarrow q, q \rightarrow r, r \rightarrow s, \sim s$ and $p \vee t$.	[8]	CO 2
8.	Divide 120 into three parts so that the sum of their products taken two at a time shall be maximum.	[8]	CO 1
9.	Show that the set $G=\{1,-1, i,-i\}$, where i is a fourth root of unity is a group with respect to multiplication.	[8]	CO 4

10.	If x is an element of a cyclic group of order 15 and two of x^{3}, x^{5} and x^{9} are equal, determine $\mathrm{o}\left(x^{13}\right)$ where o denotes the order. OR Let $U(n)$ be a group defined as $U(n)=\{m \in N: 1 \leq m \leq n$ and $\operatorname{gcd}(m, n)=1\}$. Is $U(8)$ isomorphic to $U(12)$? Justify your answer.	[8]	CO 4
SECTION C (Q11 is compulsory and Q12A, Q12B have internal choice)			
11.A	Evaluate $\iint \frac{x^{2} y^{2}}{x^{2}+y^{2}} d x d y$ by changing it to polar co-ordinates over the annular region between circles $x^{2}+y^{2}=a^{2}$ and $x^{2}+y^{2}=b^{2} ; a>b>0$.	[10]	CO 1
11.B	Let G be the group of integers under addition and let N be the set of all integral multiples of 3 . Prove that N is a subgroup of G and determine all the cosets of N in G.	[10]	CO 4
12.A	Is the matrix $\left[\begin{array}{ccc}1 & 2 & 2 \\ 0 & 2 & 1 \\ -1 & 2 & 2\end{array}\right]$ diagonalizable? Justify your answer. OR Given that $A=\left[\begin{array}{lll}a & b & c \\ b & c & a \\ c & a & b\end{array}\right]$ where a, b, c are roots of $x^{3}+x^{2}+k=0$ (k is a constant). Prove that A is orthogonal.	[10]	CO 3
12.B	Find the order of each element in the cyclic group $G=\left\{a, a^{2}, a^{3}, a^{4}, a^{5}, a^{6}=e\right\}$ where e being the identity element. OR Show that the set R of real numbers is a commutative ring with unity with respect to addition and multiplication of real numbers.	[10]	CO 4

Name: Enrolment No:		U UPES	
END SEMESTER EXAMINATION-2017 Course: MATH 1002-Mathematics-I Programme: B. Tech. (All SCE Branches) Semester: I (ODD-2017-18) Time: 03 hrs. Max. Marks:100 Instructions: Attempt all questions from Section A (each carrying 4 marks); attempt all questions from Section B (each carrying 8 marks); attempt all questions from Section \mathbf{C} (each carrying 20 marks).			
Section A(Attempt all questions)			
1.	Find the rank of the matrix $\left[\begin{array}{cccc}5 & 3 & 14 & 4 \\ 0 & 1 & 2 & 1 \\ 1 & -1 & 2 & 0\end{array}\right]$ by reducing it to Echelon form.	[4]	CO 3
2.	Using Cayley Hamilton Theorem find the inverse of the matrix $A=\left[\begin{array}{ccc} 2 & -1 & 1 \\ -1 & 2 & -1 \\ 1 & -1 & 2 \end{array}\right]$	[4]	CO 3
3.	Verify that the proposition $p \wedge(q \wedge \sim p)$ is a contradiction.	[4]	CO 2
4.	Find $\mathrm{n}^{\text {th }}$ derivative of $\frac{\boldsymbol{a x + b}}{\boldsymbol{c} x+\boldsymbol{d}}$ with respect to x.	[4]	CO 1
5.	Evaluate $\int_{0}^{1} \int_{0}^{x^{2}} \int_{0}^{x+y}(x-2 y+z) d z d y d x$	[4]	CO 1
SECTION B(Q6-Q9 are compulsory and Q10 has internal choice)			
6.	Determine the values of λ and μ such that the system $2 x-5 y+2 z=8, \quad 2 x+4 y+6 z=5, \quad x+2 y+\lambda z=\mu$ has (i) no solution (ii) a unique solution (iii) infinite number of solutions.	[8]	CO 3
7.	Show that s is a valid conclusion from the premises $p \rightarrow q, p \rightarrow r, \sim(q \wedge r) \text { and } s \vee p$	[8]	CO 2
8.	Find the shortest distance between the lines $\frac{x-3}{1}=\frac{y-5}{-2}=\frac{z-7}{1}$ and $\frac{x+1}{7}=\frac{y+1}{-6}=\frac{z+1}{1}$	[8]	CO 1

9.	Show that the set $G=\left\{1, \omega, \omega^{2}\right\}$ where ω is an imaginary cube root of unity is a group with respect to multiplication.	[8]	CO 4
10.	If x is an element of a cyclic group of order 21 and two of x^{3}, x^{5} and x^{9} are equal, determine $\mathrm{o}\left(x^{19}\right)$ where o denote the order. OR Consider the elements $A=\left[\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right]$ and $B=\left[\begin{array}{cc}0 & 1 \\ -1 & -1\end{array}\right]$ from a group G with respect to matrix multiplication. Find $\mathrm{o}(A), \mathrm{o}(B), \mathrm{o}(A B)$, where o denote the order.	[8]	CO 4
SECTION C(Q11 is compulsory and Q12A, Q12B have internal choice)			
11.A	Evaluate $\iint \frac{1}{\sqrt{x y}} d x d y$ by changing it to polar coordinates, over the region of integration bounded by $x^{2}+y^{2}-x=0$ and $y \geq 0$.	[10]	CO 1
11.B	Prove that the set $G=\{1,2,3,4,5,6\}$ is a finite abelian group of order 6 with respect to multiplication modulo 7 .	[10]	CO 4
12.A	Is the matrix $\left[\begin{array}{ccc}8 & -6 & 2 \\ -6 & 7 & -4 \\ 2 & -4 & 3\end{array}\right]$ diagonalizable? Justify your answer? OR The Eigen vectors of a 3×3 matrix A corresponding to eigen values $1,1,3$ are $[1,0,-1]^{T} ;[0,1,-1]^{T}$ and $[1,1,0]^{T}$ respectively, find the matrix A.	[10]	CO 3
12.B	Find the inverse of the following permutations:: (i) $\quad\left(\begin{array}{llll}1 & 2 & 3 & 4 \\ 1 & 3 & 4 & 2\end{array}\right)$ (ii) $\left(\begin{array}{llll}1 & 2 & 3 & 4 \\ 3 & 4 & 1 & 2\end{array}\right)$ (iii) $\left(\begin{array}{lllll}1 & 2 & 3 & 4 & 5 \\ 2 & 3 & 1 & 5 & 4\end{array}\right)$ Also determine which of the following are even permutations: a. $\quad g=(1$ 23 4 5) (1 3)(4 5) b. $h=(1$ 2)(1 3)(5 7) OR Show that the set Q of rational numbers is a commutative ring with unity with respect to addition and multiplication of real numbers.	[10]	CO 4

