T T			
	a	m	Δ
1.4	а		L.

Enrolment No:

End Semester Examination, Dec 2017

Course: MATH 306-Applied Numerical Methods

Programme: B. Tech. (Civil) Semester: III (ODD-2017-18)

Time: 03 hrs. Max. Marks:100

Instructions:

Attempt all questions from **Section A** (each carrying 4 marks); attempt all questions from **Section B** (each carrying 8 marks); attempt all questions from **Section C** (each carrying 20 marks).

carryi	ng 8 marks); attempt all questions from Section C (each carrying 20 marks).		
	Section A		
	(Attempt all questions)		
1.	Write general form of a second order linear Partial Differential Equation. Classify it in		CO6
2.	2. Mention two non - iterative methods to solve an Ordinary Differential Equation.		
3.	3. Write down one - dimensional Heat Equation and its finite difference scheme.		
4.	4. Can we apply Simpson one third and Simpson three eight rule for Numerical Integration for any number of sub intervals? If not then what is to be taken into consideration.		CO3
5.	Solve $\frac{dy}{dx} = x^2 - y$; $y(0) = 1$ by Taylor Series method for y (0.1) in single step.	[4]	CO6
	SECTION B		ı
	(Q6-Q9 are compulsory and Q10 has internal choice)		
6.	Solve by Picard's method: $\frac{dy}{dx} = x$, $\frac{dz}{dx} = x^3(y+z)$, where $y = 1 \& z = \frac{1}{2}$ at $x = 0$. Obtain the values of y and z when $x = 0.2$ correct up to two places of decimal.		CO6
Solve the equation $\frac{dy}{dx} = x + y$ with initial condition $y(0) = 1$ by Runge-Kutta method of 4 th order from $x = 0$ to $x = 0.2$ with $h = 0.1$.		[8]	CO6
8.	Define $D, E, \Delta \& \nabla$ operators of the finite difference and deduce the following. (a) $\Delta \log f(x) = \log \left\{ 1 + \frac{\Delta f(x)}{f(x)} \right\}$ (b) $e^x = \left(\frac{\Delta^2}{E}\right) e^x \frac{E e^x}{\Delta^2 e^x}$ where the interval of differencing being unity.	[8]	CO1
9.	Use the method of fixed point iteration to find a positive root of the equation $xe^x = 1$ between 0 and 1.	[8]	CO4

	Show that the third divided difference with arguments x_0, x_1, x_2 and x_3 of the function $\frac{1}{x}$ is $(-1)^3 \frac{1}{x_0 x_1 x_2 x_3}$.					
	OR					
10.	Using Newton's divided difference formula for Interpolation find the value of y for	[8]	CO2			
	x = 9.5 for a function $y = f(x)$ which has following set of values.					
	x = 7 8 9 10					
	y = 3 1 1 9					
SECTION C (Q11 is compulsory and Q12A, Q12B have internal choice)						
	Use LU decomposition method of Crout to solve the system of equations	[10]				
11.A	2x + y + 4z = 12; $8x - 3y + 2z = 20$; $4x + 11y - z = 33$		CO5			
	Solve by Horner's method to find the root correct to two places of decimal					
11.B	$11.B x^3 + 9x^2 - 18 = 0.$		CO4			
	Solve the equation $\frac{\partial u}{\partial t} = \frac{\partial^2 u}{\partial x^2}$ satisfying the conditions $u(0, t) = 0, t \ge 0$;					
	$u(5,t) = 0$, $t \ge 0$ and $u(x,0) = 10x(5-x)$, $0 \le x \le 5$. Compute u for five time-					
12.A	step by Bender Smith scheme taking $h = 1$ and $k = 1$.	[10]	CO6			
	OR Solve the above problem by Crank Niehelsen Method for two time stone					
	Solve the above problem by Crank Nicholson Method for two time steps.					
	Solve steady state 2-D heat flow problem $u_{xx} + u_{yy} = 0$ with following conditions using					
	Liebmann's iteration process: $0 \le x \le 4$, $0 \le y \le 4$, $u(0, y) = 0$, $u(4, y) = 8 + 2y$,					
	$u(x,0) = \frac{x^2}{2}$, $u(x,4) = x^2$ where $u(x,y)$ is temperature at the point (x,y) .					
12.B	OR	[10]	CO6			
	Solve the equation $u_{xx} + u_{yy} = -10 (x^2 + y^2 + 10)$ over the square mesh with sides $x = 0, x = 3, y = 0$ and $y = 3$ with $u = 0$ on the boundary and mesh length equal to 1.					