	ent No: LUPES		
End Semester Examination, Dec 2017 Course: MATH 306-Applied Numerical Methods Programme: B. Tech. (Civil) Semester: III (ODD-2017-18) Time: 03 hrs. Max. Marks:100 Instructions: Attempt all questions from Section A (each carrying 4 marks); attempt all questions from Section B (each carrying 8 marks); attempt all questions from Section C (each carrying 20 marks).			
Section A(Attempt all questions)			
1.	Write general form of a second order linear Partial Differential Equation. Classify it in Parabolic, Elliptic and Hyperbolic equations.	[4]	CO6
2.	Mention two non - iterative methods to solve an Ordinary Differential Equation.	[4]	CO6
3.	Write down one - dimensional Heat Equation and its finite difference scheme.	[4]	CO6
4.	Can we apply Simpson one third and Simpson three eight rule for Numerical Integration for any number of sub intervals? If not then what is to be taken into consideration.	[4]	CO3
5.	Solve $\frac{d y}{d x}=x^{2}-y ; y(0)=1$ by Taylor Series method for $\mathrm{y}(0.1)$ in single step.	[4]	CO6
SECTION B(Q6-Q9 are compulsory and Q10 has internal choice)			
6.	Solve by Picard's method: $\frac{d y}{d x}=x, \frac{d z}{d x}=x^{3}(y+z)$, where $y=1 \& z=\frac{1}{2}$ at $x=0$. Obtain the values of y and z when $x=0.2$ correct up to two places of decimal.	[8]	CO6
7.	Solve the equation $\frac{d y}{d x}=x+y$ with initial condition $y(0)=1$ by Runge-Kutta method of $4^{\text {th }}$ order from $x=0$ to $x=0.2$ with $h=0.1$.	[8]	CO6
8.	Define $D, E, \Delta \& \nabla$ operators of the finite difference and deduce the following. (a) $\Delta \log f(x)=\log \left\{1+\frac{\Delta f(x)}{f(x)}\right\}$ (b) $e^{x}=\left(\frac{\Delta^{2}}{E}\right) e^{x} \frac{E e^{x}}{\Delta^{2} e^{x}}$ where the interval of differencing being unity.	[8]	CO1
9.	Use the method of fixed point iteration to find a positive root of the equation $x e^{x}=1$ between 0 and 1 .	[8]	CO4

10.	Show that the third divided difference with arguments x_{0}, x_{1}, x_{2} and x_{3} of the function $\frac{1}{x}$ is $(-1)^{3} \frac{1}{x_{0} x_{1} x_{2} x_{3}}$. OR Using Newton's divided difference formula for Interpolation find the value of y for $x=9.5$ for a function $y=f(x)$ which has following set of values . $\begin{array}{ccccc} x=7 & 8 & 9 & 10 \\ y= & 3 & 1 & 1 & 9 \end{array}$	[8]	CO2
	SECTION C (Q11 is compulsory and Q12A, Q12B have internal choice)		
11.A	Use LU decomposition method of Crout to solve the system of equations $2 x+y+4 z=12 ; 8 x-3 y+2 z=20 ; 4 x+11 y-z=33$	[10]	CO5
11.B	Solve by Horner's method to find the root correct to two places of decimal $x^{3}+9 x^{2}-18=0$	[10]	CO4
12.A	Solve the equation $\frac{\partial u}{\partial t}=\frac{\partial^{2} u}{\partial^{2} x}$ satisfying the conditions $u(0, t)=0, t \geq 0$; $u(5, t)=0, t \geq 0$ and $u(x, 0)=10 x(5-x), 0 \leq x \leq 5$. Compute u for five timestep by Bender Smith scheme taking $h=1$ and $k=1$. OR Solve the above problem by Crank Nicholson Method for two time steps.	[10]	CO6
12.B	Solve steady state 2-D heat flow problem $u_{x x}+u_{y y}=0$ with following conditions using Liebmann's iteration process: $0 \leq x \leq 4,0 \leq y \leq 4, u(0, y)=0, u(4, y)=8+2 y$, $u(x, 0)=\frac{x^{2}}{2}, u(x, 4)=x^{2}$ where $u(x, y)$ is temperature at the point (x, y). OR Solve the equation $u_{x x}+u_{y y}=-10\left(x^{2}+y^{2}+10\right)$ over the square mesh with sides $x=0, x=3, y=0$ and $y=3$ with $u=0$ on the boundary and mesh length equal to 1 .	[10]	CO6

