8.	Determine the inverse of the following matrix by Gauss Jordan method $A = \begin{bmatrix} -1 & 1 & 2 \\ 3 & -1 & 1 \\ -1 & 3 & 4 \end{bmatrix}.$	[8]	CO2			
9.	Investigate the values of λ and μ so that the equations x + y + z = 6 x + 2y + 3z = 10 $x + 2y + \lambda z = \mu$ have (i) no solution, (ii) a unique solution and (iii) an infinite number of solutions.	[8]	CO2			
10.	Differentiate $\tan^{-1}\left\{\frac{\sqrt{1+x^2}-\sqrt{1-x^2}}{\sqrt{1+x^2}+\sqrt{1-x^2}}\right\}$ with respect to $\cos^{-1}(x^2)$. OR Evaluate the integral $\int \frac{x}{x^2+x+1} dx$.	[8]	CO3			
	SECTION C (Q11 is compulsory and Q12A, Q12B have internal choice)					
11.A	If $y = x \sin(a + y)$, then prove that $\frac{dy}{dx} = \frac{\sin^2(a + y)}{\sin a}$.	[10]	CO3			
11.B	A fair dice is rolled. Consider the three events $A = \{1, 3, 5\}, B = \{2, 3\}$ and $C = \{2, 3, 4, 5\}$. Determine (i) $P\left(\frac{A}{B}\right)$ and $P\left(\frac{B}{A}\right)$, (ii) $P\left(\frac{A}{C}\right)$ and $P\left(\frac{C}{A}\right)$, (iii) $P\left(\frac{A \cup B}{C}\right)$ and $P\left(\frac{A \cap B}{C}\right)$.	[10]	CO4			
12.A	Evaluate the integral $\int \frac{1}{(x-1)^2(x+2)} dx$. OR Evaluate the integral $\int \frac{3x+5}{x^3-x^2-x+1} dx$.	[10]	CO3			
12.B	There are three bags: first containing 1 white, 2 red, 3 green balls; second 2 white, 3 red, 1 green balls and third 3 white, 1 red, 2 green balls. Two balls are drawn from a bag chosen at random. These are found to be one white and one red. Determine the probability that the balls so drawn came from the second bag. OR In a bolt factory, machines <i>A</i> , <i>B</i> and <i>C</i> manufacture 25%, 35% and 40% of the total output respectively. Of their output 5%, 4% and 2% are defective bolts. A bolt is drawn at random from the product and is found to be defective. What are the probabilities that it was manufactured by machines <i>A</i> , <i>B</i> and <i>C</i> ?	[10]	CO4			

Name: Enrolment No:								
	End Semester Examination, Dec 2017 Course: MATH 1006-Mathematics							
Programme: BCA Semester: I (ODD-2017-18) Time: 03 hrs. Max. Marks:								
Atten	uctions: npt all questions from Section A (each carry ng 8 marks); attempt all questions from Sec		ection B	(each				
		Section A mpt all questions)						
1.	Determine the solution of the following equation $x^{1/2} + 3x^{1/4} + 2 = 0$.		[4]	CO1				
2.	Determine the value of x , y , a and b if $\begin{bmatrix} x \\ x \end{bmatrix}$	$ \begin{array}{ccc} x+2y & 2x-y \\ 3a+b & a-2b \end{array} \end{bmatrix} = \begin{bmatrix} 3 & 11 \\ 3 & 8 \end{bmatrix}. $	[4]	CO2				
3.	If $y = e^{x + e^{x + e^{x + e^{x + \cdots \infty}}}}$, then prove that	$\frac{dy}{dx} = \frac{y}{(1-y)}.$	[4]	CO3				
4.	Evaluate the following integral $\int \frac{1}{\sqrt{x^2 - 4x^2}}$	$\overline{x+2}$ dx.	[4]	CO3				
5.		nd <i>B</i> are defined as below: A = Getting 4 and 5 on the second throw. Determine the occurred.	[4]	CO4				
	SECTION B (Q6-Q9 are compulsory and Q10 has internal choice)							
6.	Prove that $\begin{vmatrix} a & b & c \\ a^2 & b^2 & c^2 \\ a^3 & b^3 & c^3 \end{vmatrix} = abc(a-b)(b-c)$		[8]	CO1				
7.	Prove that $\begin{vmatrix} 1 & a & a^3 \\ 1 & b & b^3 \\ 1 & c & c^3 \end{vmatrix} = (a-b)(b-c)(c-a)$		[8]	CO1				

	Determine the inverse of the following matrix by Gauss Jordan method						
8.	$A = \begin{bmatrix} 1 & 3 & 3 \\ 1 & 4 & 3 \\ 1 & 3 & 4 \end{bmatrix}.$	[8]	CO2				
9.	Investigate the values of <i>m</i> and <i>n</i> so that the equations x+2y+z=4 x+y+z=6 x-2y+mz=n have (i) no solution, (ii) a unique solution and (iii) an infinite number of solutions.	[8]	CO2				
10.	Differentiate $\tan^{-1}\left\{\frac{\sqrt{1-x^2}}{x}\right\}$ with respect to $\cos^{-1}\left(2x\sqrt{1-x^2}\right)$. OR Evaluate the following integral $\int_{0}^{\infty} \frac{1}{(x+1)(x^2+9)} dx$. SECTION C	[8]	CO3				
	(Q11 is compulsory and Q12A, Q12B have internal choice)						
11.A	If $\tan^{-1}\left(\frac{y}{x}\right) = \log\sqrt{(x^2 + y^2)}$, then prove that $\frac{dy}{dx} = \frac{x + y}{x - y}$.	[10]	CO3				
11.B	Two dice are tossed once. Determine the probability of getting an even number on the first dice or a total of 8.	[10]	CO4				
12.A	Evaluate the following integral $\int \frac{1}{(x+1)^2(x-2)} dx$. OR Evaluate the following integral $\int_{0}^{\infty} \frac{1}{(x^2+1)(x^2+4)} dx$.	[10]	CO3				
	A bag <i>A</i> contains 8 white and 4 black balls. A second bag <i>B</i> contains 5 white and 6 black balls. One ball is drawn at random from bag <i>A</i> and is placed in bag <i>B</i> . Now, a ball is drawn at random from bag <i>B</i> . It is found that this ball is white. Determine the probability that a black ball has been transferred from bag <i>A</i> .						
12.B	OR Four boxes <i>A</i> , <i>B</i> , <i>C</i> and <i>D</i> contain 500, 300, 200 and 100 fuses respectively. The percentages of fuses in the boxes which are defective are 3%, 2%, 1% and 0.5% respectively. One fuse is selected at random arbitrarily from one of the boxes. It is found to be a defective fuse. Determine the probability that it has come from the box <i>D</i> .	[10]	CO4				