8.	Determine the inverse of the following matrix by Gauss Jordan method $A=\left[\begin{array}{ccc} -1 & 1 & 2 \\ 3 & -1 & 1 \\ -1 & 3 & 4 \end{array}\right]$	[8]	CO2
9.	Investigate the values of λ and μ so that the equations $\begin{aligned} & x+y+z=6 \\ & x+2 y+3 z=10 \\ & x+2 y+\lambda z=\mu \end{aligned}$ have (i) no solution, (ii) a unique solution and (iii) an infinite number of solutions.	[8]	CO2
10.	Differentiate $\tan ^{-1}\left\{\frac{\sqrt{1+x^{2}}-\sqrt{1-x^{2}}}{\sqrt{1+x^{2}}+\sqrt{1-x^{2}}}\right\}$ with respect to $\cos ^{-1}\left(x^{2}\right)$. OR Evaluate the integral $\int \frac{x}{x^{2}+x+1} d x$.	[8]	CO 3
SECTION C(Q11 is compulsory and Q12A, Q12B have internal choice)			
11.A	If $y=x \sin (a+y)$, then prove that $\frac{d y}{d x}=\frac{\sin ^{2}(a+y)}{\sin a}$.	[10]	CO
11.B	A fair dice is rolled. Consider the three events $A=\{1,3,5\}, B=\{2,3\}$ and $C=\{2,3,4,5\}$. Determine (i) $P\left(\frac{A}{B}\right)$ and $P\left(\frac{B}{A}\right)$, (ii) $P\left(\frac{A}{C}\right)$ and $P\left(\frac{C}{A}\right)$, (iii) $P\left(\frac{A \cup B}{C}\right)$ and $P\left(\frac{A \cap B}{C}\right)$.	[10]	CO4
12.A	Evaluate the integral $\int \frac{1}{(x-1)^{2}(x+2)} d x$. OR Evaluate the integral $\int \frac{3 x+5}{x^{3}-x^{2}-x+1} d x$.	[10]	CO 3
12.B	There are three bags: first containing 1 white, 2 red, 3 green balls; second 2 white, 3 red, 1 green balls and third 3 white, 1 red, 2 green balls. Two balls are drawn from a bag chosen at random. These are found to be one white and one red. Determine the probability that the balls so drawn came from the second bag. OR In a bolt factory, machines A, B and C manufacture $25 \%, 35 \%$ and 40% of the total output respectively. Of their output $5 \%, 4 \%$ and 2% are defective bolts. A bolt is drawn at random from the product and is found to be defective. What are the probabilities that it was manufactured by machines A, B and C ?	[10]	CO4

Name: Enrolment No:			
	End Semester Examination, Dec 2017 Course: MATH 1006-Mathematics		
Programme: BCA Semester: I (ODD-2017-18) Time: 03 hrs. Max. Marks:100			
Instructions: Attempt all questions from Section \mathbf{A} (each carrying 4 marks); attempt all questions from Section \mathbf{B} (each carrying 8 marks); attempt all questions from Section \mathbf{C} (each carrying 20 marks).			
Section A(Attempt all questions)			
1.	Determine the solution of the following equation after reducing it into quadratic equation $x^{1 / 2}+3 x^{1 / 4}+2=0$.	[4]	CO1
2.	Determine the value of x, y, a and b if $\left[\begin{array}{cc}x+2 y & 2 x-y \\ 3 a+b & a-2 b\end{array}\right]=\left[\begin{array}{cc}3 & 11 \\ 3 & 8\end{array}\right]$.	[4]	CO 2
3.	If $y=e^{x+e^{x+e^{x+e} e^{x+\ldots} \infty}}, \quad$ then prove that $\frac{d y}{d x}=\frac{y}{(1-y)}$.	[4]	CO 3
4.	Evaluate the following integral $\int \frac{1}{\sqrt{x^{2}-4 x+2}} d x$.	[4]	CO3
5.	A dice is thrown three times. Events A and B are defined as below: $A=$ Getting 4 on third dice, $B=$ Getting 6 on the first and 5 on the second throw. Determine the probability of A given that B has already occurred.	[4]	CO4
SECTION B (Q6-Q9 are compulsory and Q10 has internal choice)			
6.	Prove that $\left\|\begin{array}{ccc}a & b & c \\ a^{2} & b^{2} & c^{2} \\ a^{3} & b^{3} & c^{3}\end{array}\right\|=a b c(a-b)(b-c)(c-a)$.	[8]	CO1
7.	Prove that $\left\|\begin{array}{lll}1 & a & a^{3} \\ 1 & b & b^{3} \\ 1 & c & c^{3}\end{array}\right\|=(a-b)(b-c)(c-a)(a+b+c)$.	[8]	CO1

8.	Determine the inverse of the following matrix by Gauss Jordan method $A=\left[\begin{array}{lll} 1 & 3 & 3 \\ 1 & 4 & 3 \\ 1 & 3 & 4 \end{array}\right] .$	[8]	CO2
9.	Investigate the values of m and n so that the equations $\begin{aligned} & x+2 y+z=4 \\ & x+y+z=6 \\ & x-2 y+m z=n \end{aligned}$ have (i) no solution, (ii) a unique solution and (iii) an infinite number of solutions.	[8]	CO2
10.	Differentiate $\tan ^{-1}\left\{\frac{\sqrt{1-x^{2}}}{x}\right\}$ with respect to $\cos ^{-1}\left(2 x \sqrt{1-x^{2}}\right)$. OR Evaluate the following integral $\int_{0}^{\infty} \frac{1}{(x+1)\left(x^{2}+9\right)} d x$.	[8]	$\mathrm{CO3}$
SECTION C(Q11 is compulsory and Q12A, Q12B have internal choice)			
11.A	If $\tan ^{-1}\left(\frac{y}{x}\right)=\log \sqrt{\left(x^{2}+y^{2}\right)}$, then prove that $\frac{d y}{d x}=\frac{x+y}{x-y}$.	[10]	CO 3
11.B	Two dice are tossed once. Determine the probability of getting an even number on the first dice or a total of 8 .	[10]	$\mathrm{CO4}$
12.A	Evaluate the following integral $\int \frac{1}{(x+1)^{2}(x-2)} d x$. OR Evaluate the following integral $\int_{0}^{\infty} \frac{1}{\left(x^{2}+1\right)\left(x^{2}+4\right)} d x$.	[10]	$\mathrm{CO3}$
12.B	A bag A contains 8 white and 4 black balls. A second bag B contains 5 white and 6 black balls. One ball is drawn at random from bag A and is placed in bag B. Now, a ball is drawn at random from bag B. It is found that this ball is white. Determine the probability that a black ball has been transferred from bag A. OR Four boxes A, B, C and D contain 500, 300, 200 and 100 fuses respectively. The percentages of fuses in the boxes which are defective are $3 \%, 2 \%, 1 \%$ and 0.5% respectively. One fuse is selected at random arbitrarily from one of the boxes. It is found to be a defective fuse. Determine the probability that it has come from the box D.	[10]	$\mathrm{CO4}$

