Roll No: ----

 WINIVERSITY OF PETROLEUM AND ENERGY STUDIES

 UPES

 End Semester Examination, December 2017

 Program Name : B. Tech (APEU)
 Semester
 : V

 Course Name
 : Natural Gas Engineering
 Max. Marks
 : 100

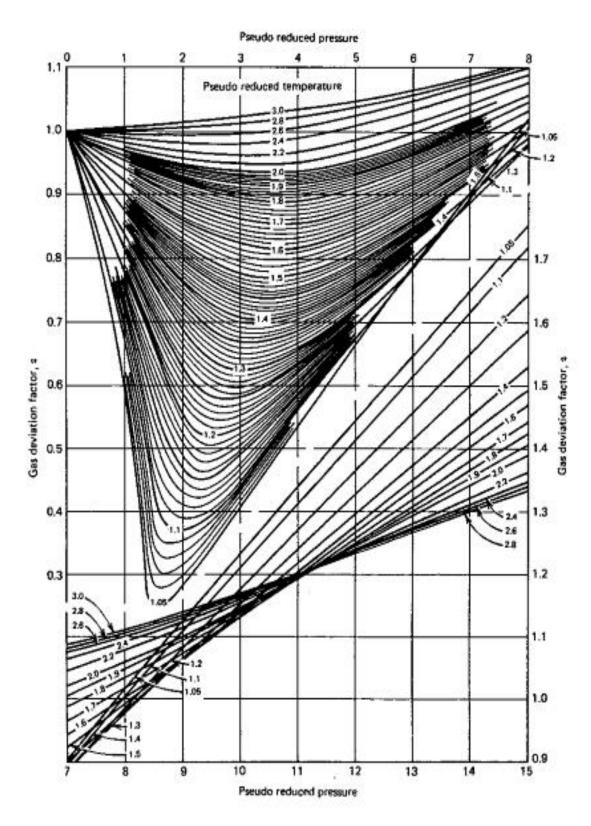
 Course Code
 : PTEG 362
 Duration
 : 3 Hrs

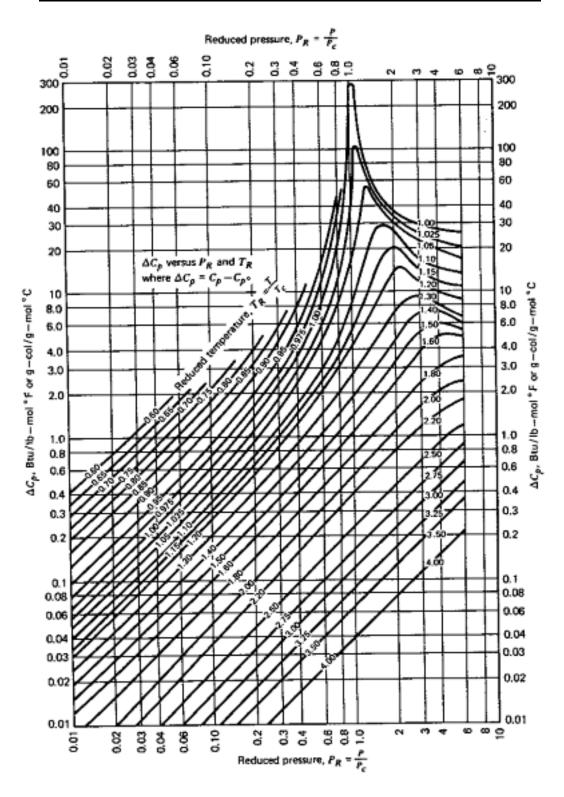
 No. of page/s
 : 5

Instructions:

- Attempt all questions from Section-A and Section-B
- The physical constants for natural gas constituents, compressibility factor chart, isothermal pressure correction to the molar heat capacity chart are enclosed with the paper

	Section-A (Attempt all questions)				
1.	What is critical pressure and critical temperature? How the Kay's mixing rule is used to find the effective critical properties of natural gas ?	[5]	CO1,CO2		
2.	What are the diluents and contaminants present in natural gas ?	[5]	CO1		
3.	What is the state of a substance at critical point ?	[5]	CO2		
4.	Define retrograde phenomenon and explain it with the help of phase diagram	[5]	CO2		
5.	List the different selection criterion of flow measurement devices	[5]	CO4		
6.	Explain the different compression processes with the help of PV diagram	[5]	CO3		
7.	Write the function of oil and gas separators	[5]	CO5		
8.	List the merits and demerits of horizontal separator	[5]	CO5		
Section-B (Attempt all questions)					
9.	Draw the neat sectional view of horizontal, vertical and spherical separator/s and label their different parts	[15]	CO5		
10.	What are the different attributes of flow measurement devices? Explain in details the % of full scale and % of reading accuracy with example	[15]	CO4		


11.	Discuss the merits and demerits of different types of orifice meters and pressure tabs in details with the help of neat diagram	[15]	CO4
12.	A gas is being compressed from 100 psia and 150^{0} F to 2500 psia. Determine its compression parameters at the suction end. The gas has the following composition in mole fraction: C ₁ = 0.9216, C ₂ = 0.0488, C ₃ = 0.0185, i-C ₄ = 0.0039, n-C ₄ = 0.0055, i-C ₅ = 0.0017.		CO1,CO3



Compound	Molecular Weight	Critical Pressure (psia)	Critical Temp. (°R)	Crit. Comp. Factor (Z _c)
CH4	16.043	667.8	343.1	0.289
C_2H_6	30.070	707.8	549.8	0.285
C_3H_8	44.097	616.3	665.7	0.281
$n - C_4 H_{10}$	58.124	550.7	765.4	0.274
$i - C_4 H_{10}$	58.124	529.1	734.7	0.283
n-C5H12	72.151	488.6	845.4	0.262
i-C5H12	72.151	490.4	828.8	0.273
$n - C_6 H_{14}$	86.178	436.9	913.4	0.264
$n - C_7 H_{16}$	100.205	396.8	972.5	0.263
n-C ₈ H ₁₈	114.232	360.6	1023.9	0.259
$n - C_9 H_{20}$	128.259	332.0	1070.4	0.251
$n - C_{10}H_{22}$	142.286	304.0	1111.8	0.247
N2	28.013	493.0	227.3	0.291
CO_2	44.010	1070.9	547.6	0.274
I ₂ S	34.076	1306.0	672.4	0.266
)2	31.999	737.1	278.6	0.292
2	2.016	188.2	59.9	0.304
20	18.015	3203.6	1165.1	0.230

Table 1: Physical Constants for Natural Gas Constituents

Figure 1: Compressibility factor chart for Natural Gas as a function of reduced pressure and temperature

