Roll No: -----

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES

End Semester Examination – December 2017

Program/course: B. Tech (ET+IPR)	Semester –	V
Subject: Combustion Energy & Technology	Max. Marks	: 100
Code : ETEG303	Duration	: 3 Hrs
No. of page/s: 02		

*The question paper consists of three sections. Answer the questions section wise in the answer booklet.

Note: Assume suitable data wherever necessary. The notations used here have the usual meanings.

SECTION – A (Total Marks: $4 \times 5 = 20$)

- Attempt <u>all</u> the questions.
- **Q.1** Calculate the heat of formation of gaseous ethanol at 298.15 K from its elements using the following data:

Data: Heat of formation of $CO_{2(g)} = -393.51 \text{ kJ/mol}$

Heat of formation of $H_2O_{(1)} = -285.83 \text{ kJ/mol}$

Heat of combustion of gaseous ethanol at 298.15 K = -1410.09 kJ/mol[05]Q.2 Explain about the calorific value of fuel.[05]Q.3 Distinguish between solid fuels and liquid fuels.[05]Q.4 Discuss about the adiabatic flame temperature.[05]

SECTION – B (Total Marks: $4 \times 15 = 60$)

- ► Attempt <u>*all*</u> the questions.
- **Q.5** What are the various gaseous fuels available in the market? Explain in detail the manufacturing process of water gas along with its applications.

- Q.6 What is the importance of catalytic cracking process in the refinery? Explain the process of fluidized catalytic cracking with neat schematic diagram.[15]
- Q.7 Explain the following terms in brief:[05]a) Ultimate analysis of coal[05]b) Drift theory of coal formation[05]c) Bituminous coal[05]

Q.8 a) Calculate the gross and net calorific value of a coal which analyses: Carbon - 74%, Hydrogen - 6%, Nitrogen - 1%, Oxygen - 9%, Sulphur - 0.8%, moisture - 2.2% and ash - 7%.
b) Write down about the uses of coal and various petroleum products.

SECTION – C (Total Marks: $1 \times 20 = 20$)

- ➤ Attempt <u>any one</u> the questions.
- Q.9 The ultimate analysis of a residual fuel oil (RFO) sample is as given below:

C: 88.4%, H: 9.4% and S: 2.2% (by weight)

It is used as a fuel in a power generating boiler with 25% excess air.

Calculate: a) the theoretical oxygen requirement, b) the theoretical dry air requirement, c) Equivalence ratio and d) The Orsat analysis of flue gases [20]

Q.10 Methanol is being burnt as a fuel, both methanol and air are available at 298 K. If 40% excess air is supplied, calculate the adiabatic flame temperature assuming the complete combustion.

[20]

Data: i) Net calorific value of methanol at 298 K = 638100 J/mol

ii) Heat Capacity data, $C_p^0 = a + bT$

Componenta $b \ge 10^3$

CO237.17423.2371H2O25.158421.2818
H ₂ O 25,1584 21,2818
O ₂ 18.4331 21.7174
N ₂ 31.1182 3.1969