UNIVERSITY OF PETROLEUM AND ENERGY STUDIES

End Semester Examination, December 2017

Program Name: Int. B. Tech ET + LLB (IPR)
Course Name : Material and Energy Flow Computation
Semester - III

Course Code : CHEG 201
Max. Marks : 100
Duration : 3 Hrs
No. of page/s:

Instructions:

Attempt all questions from Section-A (each carrying 10 marks); all Questions from Section-B (each carrying 12 marks) and any one Question from Section-C (carrying 20 marks).

Section-A (Attempt All Questions)

Section-A (Attempt All Questions)			
1.	An analysis of the vent gases from the chlorinator of a plant for making chlorinated rubber showed 70% by volume $\mathrm{HCl}, 20 \%$ by volume $C l_{2}$ and the rest is $C C l_{4}$. Determine: (a) the $\%$ composition by weight (b) the average molecular weight of the gas (c) The density at standard conditions.	[10]	CO2
2.	The vapor pressure of diethyl ether at 273 K is 25 kPa and its latent heat of vaporization is $4.185 \times 10^{2} \mathrm{~kJ} / \mathrm{kg}$. Using the Classius-Clapeyron equation, estimate the vapor pressure at 293 K and 308 K .	[10]	CO 3
	SECTION B (Attempt All Questions)		
3.	Barium Chloride reacts with Sodium Sulphate to precipitate Barium Sulphate : $\mathrm{BaCl}_{2}+\mathrm{Na}_{2} \mathrm{SO}_{4} \rightarrow 2 \mathrm{NaCl}+\mathrm{BaSO}_{4}$ (a) How many grams of Barium Chloride are needed to react with 100 g of sodium sulphate? (b) For precipitating 50 g of Barium Sulphate, how many gram of the reactants are consumed? (c) How many grams of Sodium Chloride would be obtained when 50 g of Barium Sulphate is precipitated? Atomic weight of Barium $=137.32 \mathrm{~g} / \mathrm{mol}$	[12]	$\mathrm{CO2}$
4.	A mixture of Benzene and air contains 15% Benzene by volume at 300 K and 101.3 kPa . The vapor pressure of Benzene at 300 K is 13.8 kPa . Calculate the following: (a) The weight fraction of Benzene in the mixture (b) The molal humidity (c) The absolute humidity (d) The percent saturation (e) The percent relative saturation (f) The mass of air in $100 \mathrm{~m}^{3}$ of the mixture	[12]	$\mathrm{CO4}$

5.	The flue gas from an industrial furnace has the following composition by volume: $\mathrm{CO}_{2}=11.73 \%, \mathrm{CO}=0.2 \%, \mathrm{~N}_{2}=0.09 \%, \mathrm{O}_{2}=6.81 \% \text { and } \mathrm{N}_{2}=81.17 \%$ Calculate the percentage excess air employed in the combustion if the loss of carbon in clinker and ash is 1% of the fuel used and the fuel has the following composition by weight: $\mathrm{C}=74 \%, \mathrm{H}_{2}=5 \%, \mathrm{O}_{2}=5 \%, \mathrm{~N}_{2}=1 \%, \mathrm{~S}=1 \%, \mathrm{H}_{2} \mathrm{O}=9 \%$ and ash $=5 \%$.					[12]	CO5
6.	A solution of potassium dichromate in water contains $13 \% \mathrm{~K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$ by weight. 1000 kg of this solution is evaporated to remove some amount of water. The remaining solution is cooled to $20^{\circ} \mathrm{C}$. If the yield of $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$ crystals is 80%. Calculate the amount of water evaporated. Solubility of $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$ is 0.390 kgmol per 1000 kg water $\left(20^{\circ} \mathrm{C}\right)$ atomic weight: $\mathrm{K}=39 \mathrm{~g} / \mathrm{mol}, \mathrm{Cr}=52 \mathrm{~g} / \mathrm{mol}$.					[12]	CO5
7.	Fresh juice contains 14% solids and 86% water by weight and is to be concentrated to contain 42% solids by weight. In a single evaporator system, it is found that the volatile constituents of juice escape with water leaving the concentrated juice 56%, with a flat taste. To overcome this problem part of the fresh juice bypass the evaporator. Calculate: (i) The fraction of juice that bypass the evaporator (ii) The concentrated juice produced containing 42% solids by weight.					[12]	CO5
	SECTION C (Attempt Any One)						
8.	A continuous fractionating column, operating at 1 atm., is to be used to separate $15000 \mathrm{~kg} / \mathrm{h}$ of a solution of Benzene and Toluene containing 50% (by weight) Benzene into an overhead product containing 96% (by weight) Benzene and 97% (by weight) Toluene in the bottom product. The feed will be at its boiling point and a reflux ratio of 2.5 kg of reflux per kg of distillate is to be used. Calculate the condenser and reboiler load. Data: Enthalpy of feed $=170.8 \mathrm{~kJ} / \mathrm{kg}$ Enthalpy of reflux liquid $=67 \mathrm{~kJ} / \mathrm{kg}$ Enthalpy of vapor leaving the column and entering the condenser $=540 \mathrm{~kJ} / \mathrm{kg}$ Enthalpy of liquid leaving the reboiler $=201.8 \mathrm{~kJ} / \mathrm{kg}$					[20	CO6
9.	Obtain an empirical equation for calculating the heat of reaction at any temperature T (in $\mathrm{K})$ for the following reaction: $\mathrm{CO}(\mathrm{~g})+2 \mathrm{H}_{2}(\mathrm{~g}) \rightarrow \mathrm{CH}_{3} \mathrm{OH}(\mathrm{~g})$ Data: ΔH_{R}^{o} at $298 K=-90.41 \mathrm{~kJ} / \mathrm{mol}$ $C_{p}^{o}=a+b T+c T^{2}+d T^{3}, \frac{\mathrm{~kJ}}{\mathrm{kmol} . \mathrm{K}}$					[20]	$\mathrm{CO6}$

