Roll No:. -----

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES

End Semester Examination, December 2017

Program : B.Tech - Electrical Engineering Semester - III

B.Tech – Power System Engineering

Subject (Course): DC Machines & Transformer Max. Marks : 100

Course Code : ELECG 252 Duration : 3 Hrs

No. of page/s : 2

	Section A (Attempt All questions)				
1.	Explain the function of Buchholz Relay used in oil immersed transformers .	[4]	CO1		
2.	What is meant by 'equivalent resistance referred to primary' and 'equivalent resistance referred to secondary'?	[4]	CO2		
3.	Explain why a starter is required for starting a dc motor.	[4]	CO2		
4.	Distinguish between Power and Distribution Transformer	[4]	CO4		
5.	A 400 V , 10 kW series motor drives a fan when running at 800 rpm . The motor draws 50 A from the supply . The resistance of the armature and series are 0.2 Ω and 0.1 Ω respectively . Determine the electromagnetic torque developed by the motor .	[4]	CO2		
SECTION B					
6.	Write in short (i) Construction and function of commutator (ii) Why are electro-magnets preferred over permanent magnets for use in large dc machines?	[10]	CO1		
7.	In a 50 KVA, 11kV/400V transformer, the iron loss is 500 W and copper loss at ½ load is 150 W under rated conditions. Calculate the efficiency on 0.85 power factor when the transformer is working 5 % overloaded. Find also the load at this power factor for	[10]	CO1, CO4		

	maximum efficiency and the iron and copper losses corresponding to this load	
8.	A 20 kW , 250 V d.c shunt motor has full – load armature current of 85 A at 1100	
	rpm.The armature resistance is $0.18~\Omega$. Determine :	
	(i) the internal torque developed .	CO3
	(ii) the internal torque, if the field current is suddenly reduced to 80 % of its original	
	value	
9.	Deduce expressions for load shared by two transformers connected in parallel having equal turns ratio	CO4
	SECTION C (Attempt any Two Questions)	
10(a)	A 10 kW, 200 V short-shunt compound dc generator has a full-load efficiency of 90 %.	CO1,
	If the armature , series and shunt field resistance are 0.2 Ω , 0.1 Ω and 50 Ω respectively ,	CO3
	find the combined mechanical and core loss of the machine .	
10(b)	Explain how the efficiency of a dc machine is calculated from Swinburne's test . Why	CO2
	can this test not be applied in dc series machines?	70
11(a)	What is meant by the vector group of transformers? Mention various transformer	CO4
	connection in the groups .	
11(b)	A load takes 200 A at 0.9 p.f. lag from a three – phase 11 Kv/440 V star – delta	CO4
	transformer Determine the power consumed by the load , kVA rating of the	
	transformer, phase and line currents on both sides of the transformer.	0
12(a)	Explain how to plot the magnetization characteristics of DC shunt generator .Explain in	CO2
	brief how to obtain critical field resistance from the curve.	
12(b)	Voltage regulation of a transformer varies with power factor. Validate the statement	CO1,
	through suitable derivations . At what power factor will the regulation be (i) maximum	CO2
	and (ii) zero ? Does the maximum efficiency of the transformer also depend on power	7 8
	factor ? Justify .	_

 Χ		
	Roll No.	

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES

End Semester Examination, December 2017

Program : B.Tech - Electrical Engineering Semester - III

B.Tech – Power System Engineering

Subject (Course): DC Machines & Transformer Max. Marks : 100

Course Code : ELECG 252 Duration : 3 Hrs

No. of page/s : 2

	Section A (Attempt All questions)				
1.	What is the function of Oil used in transformer.	[4]	CO4		
2.	What is the all-day efficiency of the transformer .How does it differ from ordinary efficiency	[4]	CO3		
3.	Explain why a dc series motor is never run on no-load.	[4]	CO2,		
			CO3		
4.	Discuss the applications of DC Shunt and DC series motor based on their characteristics	[4]	CO3		
5.	What are instrument Transformer .	[4]	CO1,		
	SECTION B				
6.	Derive the equivalent circuit of transformer. Also draw phasor diagram for loaded transformer for a lagging load.	[10]	CO2		
7.	A 50 kVA, 440/110 V single – phase transformer has an iron loss of 250 W. With the				
	secondary winding short-circuited, full-load currents flow in the windings when 25 V is				
	applied to the primary, and the power input being 500 W. For this transformer,		CO2		
	determine (a) the percentage voltage regulation at full – load, 0.8 p.f. lagging and (b) the				
	fraction of full load at which the efficiency is maximum.		70		
8.	A 450 V 4 – pole dc shunt motor runs at 600 rpm on full load and the armature current		O.		
	is 25 A. The armature is lap wound with 500 conductors and flux per pole is expressed		CO2		
	by the relation $\Phi = 1.7 \text{ X } 10^{-2} \text{ X } \text{ I}_{a}^{0.5}$ webers .If supply voltage and torque are both				
	halved, calculate the speed at which the motor will run. Ignore stray losses.		_		
9.	What do you understand by armature reaction? Explain the concept of demagnetizing		CO2,		
	and cross magnetizing ampere – turns		CO3		
SECTION C (Attempt any Two Questions)					
10.(a)	A 10 kW $$, 250 V , 1200 rpm dc shunt motor has a full – load efficiency of 80 $\%$. The	[10]	CO2		

	field and armature resistances are 125 Ω and 0.2 Ω respectively . The speed of the motor		
	is to be reduced to 75 % with load torque remaining constant.		
	(i) What resistance should be inserted in the armature circuit?		
	(ii) With field current at its normal value, what voltage should be supplied to the		
	armature ?		
10(b)	What are the methods used for improving commutation in dc machines?	[10]	CO1,
			CO2
11(a)	What are the reasons for operating transformers in parallel . State the conditions		CO4
	necessary to parallel 3 – phase transformers.		
11(b)	A 20 kVA , 4000/200 V , 50 Hz transformer with an equivalent impedance of 0.02 Ω is		CO4
	to operate in parallel with a 15 kVA , 4000/200 V , 50 Hz transformer with an equivalent		
	impedance of 0.025 Ω . The two transformers are connected in parallel and made to cary		
	a load of 25 kVA . Assume both the impedances to have the same angle .		LLI
	(i) Find the individual load currents		S
	(ii) What percent of the rated capacity is used in each transformer?		0
12(a)	What are the methods of speed control of a dc motor? Explain with necessary equations		CO2
	any one method to control the speed of dc shunt motor.		4
12(b)	Find the resistance of the load which takes a power from 5 kW from a shunt generator		CO2
	whose external characteristics is given by the equation $V = (250 - 0.512)$		-

Χ	Χ	
		_

UNIVERSITY WITH A