Name:

Enrolment No:

Course: CSAI 7002-System Modelling and Identification

Programme: M.Tech (A&RE) Semester: I (ODD-2017-18) Time: 03 hrs.

Max. Marks:100

Instructions:

Attempt all questions from Section A (each carrying 4 marks); attempt all questions from Section B (each carrying 8 marks); attempt all questions from Section C (each carrying 20 marks).

	Section A					
1.	(Attempt all questions) Perform three iterations of Picard's method to find an approximate solution of the initial value problem $\frac{dy}{dx} = -xy, y(0) = 1$	[4]	CO1			
2.	Construct a Liapunov function for the system $\frac{dx}{dt} = -x + y^2, \frac{dy}{dt} = -y + x^2$.	[4]	CO2			
3.	Find the orthogonal trajectories of the family of curves $y^2 = 4ax$.	[4]	CO3			
4.	A vector \boldsymbol{p} is 5 units long and is in the direction of unit vector \boldsymbol{q} described below. Express the vector in matrix form; $\boldsymbol{q}_{\text{unit}} = \begin{bmatrix} 0.371\\ 0.557\\ q_z\\ 0 \end{bmatrix}$	[4]	CO4			
5.	Calculate the inverse of the given transformation matrix:	[4]	CO4			
SECTION B						
6.	(Q6-Q9 are compulsory and Q10 has internal choice) A point $p(2,3,4)^T$ is attached to a rotating frame. The frame rotates 90^0 about the x - axis of the reference frame. Find the coordinates of the point relative to the reference frame after the rotation.	[8]	CO4			
7.	Solve the equation $y'' - 4y' + 4y = e^{3x}$ with the boundary conditions $y(0) = 0$, y(1) = -2 taking $n = 4$.	[8]	CO1			
8.	Solve $x'' + 8x' + 36x = 24\cos(6t)$ and discuss the behavior of the solution as t	[8]	CO3			

	approaches infinity.		
9.	Determine the nature of the critical point (0,0) of the system $\frac{dx}{dt} = x - y, \frac{dy}{dt} = x + 5y$ and determine whether or not the point is stable.	[8]	CO2
10	Find the solution of $\frac{\partial u}{\partial t} = \frac{\partial^2 u}{\partial x^2}$ subject to $u(x, 0) = \sin \pi x, 0 \le x \le 1, t > 0$ u(0, t) = u(1, t) = 0 using Bender-Schmidt method. OR	101	601
10.	Using Crank-Nicolson's method, solve $\frac{\partial u}{\partial t} = \frac{1}{16} \frac{\partial^2 u}{\partial x^2}$, $0 \le x \le 1, t > 0$ given that $u(x, 0) = 0, u(0, t) = 0, u(1, t) = 50t$. Compute <i>u</i> for two steps in <i>t</i> direction taking $h = 1/4$.	[8]	CO1
	SECTION C (Q11 is compulsory and Q12A, Q12B have internal choice)	Π	3
11.A	A point $p(7,3,1)^T$ is attached to a frame F_{noa} and is subjected to the following transformations. Find the coordinates of the point relative to the reference frame at the conclusion of the transformations.	L	
	 Rotation of ^{90°} about z - axis, Followed by a rotation of ^{90°} about the y - axis, Followed by a translation of ^[4,-3,7]. 	[10]	CO4
	Discuss the nature and stability of the critical point of the non-linear autonomous	_	ŀ
11.B	system $\frac{dx}{dt} = x + 4y - x^2$, $\frac{dy}{dt} = 6x - y + 2xy$.	[10]	CO2
	Solve the equation $\nabla^2 u = 0$ over the square with the boundary conditions $u(0, y) = 0$, $u(x, 0) = 0$, $u(3, y) = 100$, $u(x, 3) = 100$ on the boundary and mesh length = 1		-
12.A	OR Find two parameter solution of the following differential equation $\frac{d^2u}{dx^2} + 1 + x^2 = 0$	[10]	C01
	Find two parameter solution of the following differential equation $dx^2 = 1 + x = 0$, $u(0) = u(1) = 0$ by Galerkin method.		
12.B	A spring with a mass of 2 kg has natural length 0.5 m. A force of 25.6 N is required to maintain it stretched to a length of 0.7 m. If the spring is stretched to a length of 0.7 m and then released with initial velocity 0, find the position of the mass at any time t .	[10]	CO3

OR	
A series circuit consists of a resistor with $R = 20 \Omega$, an inductor with $L = 1 H$, a	
capacitor with $C = 0.002 F$, and a 12-V battery. If the initial charge and current are	
both 0, find the charge and current at time <i>t</i> .	

