UPES

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES

End Semester Examination - December 2017

Program/course: M. Tech Chemical Engineering (PD)	Semester -	I
Subject: Chemical Engineering Computing	Max. Marks $: 100$	
Code : CHPD7002	Duration	$: 3$ Hrs

No. of page/s: 04
*The question paper consists of three sections. Answer the questions section wise in the answer booklet.

Note: 1) Attempt all the questions.
2) Assume suitable data wherever necessary. The notations used here have the usual meanings.

SECTION - A (Total Marks: $2 \times 10=20$)

Q. 1 Obtain the eigenvalues and eigenvectors for the symmetric matrix
$\left[\begin{array}{cc}3 & 1 \\ 1 & 3 / 2\end{array}\right]$
Use $\mathrm{x}_{2}=1$ as an additional condition. Check if the eigenvalues are real for this case and if the eigenvectors are orthogonal.
Q. 2 Consider the following set of coupled ODE-IVPs:

$$
\begin{gathered}
\frac{d y_{1}}{d t}=-0.2 y_{1}+0.2 y_{2}=f_{1}(t, y) ; y_{1}(0)=0 \\
\frac{d y_{2}}{d t}=10 y_{1}-(60+0.125 t) y_{2}+0.124 t=f_{2}(t, y) ; y_{2}(0)=0
\end{gathered}
$$

(a) Obtain the appropriate eigenvalues at $\mathrm{t}=0,1,5$ and 10 analytically
(b) State whether the ODEs are stable and suggest the largest value of h for which stable solutions are expected using the $4^{\text {th }}$ order explicit RK technique.

SECTION - B (Total Marks: $4 \times 15=60$)

Q. 3 Consider a separation system as shown in Fig. 1. By setting up the mass balances, calculate the mass flow rates of each outlet streams ($\mathrm{x}_{1}, \mathrm{x}_{2}$ and x_{3}) using Gauss elimination with backward sweep.

Fig. 1: A Separation system
Q. 4 Consider the following non-linear ODE-BVP

$$
\begin{aligned}
& \frac{d^{2} y}{d x^{2}}+5 \frac{d y}{d x}-3 y^{3}=0 \\
& x=0: \frac{d y}{d x}=0 ; x=1: y(x=1)=3
\end{aligned}
$$

Using the OC for the non-symmetric case, and with $N+2=4$:
(a) What are the numerical values of x_{2} and x_{3}
(b) Give the simplified OC equation for $x_{1}=0$ (take ALL the constants and the non-linear terms to the right hand side)
(c) Give the simplified OC equation for point 2 and 3 (keep B_{ij} and A_{ij} terms separate) [08]
Q. 5 (a) Solve using the Newton-Raphson technique:
$y=1+2(1.2-y)^{2} \exp \left[10\left(1-\frac{1}{y}\right)\right]$
Use $\mathrm{y}^{(1)}=1.05$. Obtain $\mathrm{y}^{(2)}$ and $\mathrm{y}^{(3)}$.
[12]
(b) Explain in brief about the condition for convergence for successive substitutions.
Q. 6 The desorption of a gas from a liquid stream in a wetted-wall column can be described by the following PDE:
$\left(1-\eta^{2}\right) \frac{f}{\square}=\frac{\square^{2} f}{\eta^{2}}$
$\frac{f}{\eta}=0$ at $\eta=1$
$f=o$ at $\eta=0$
$f=1 a t=0$
Note that the problem as defined above is not symmetric about $\eta=0$. Carry out an orthogonal collocation solution in the η direction, using $\mathrm{N}=2$ (i.e. two internal OC points) and simplify to obtain a set of two ODE-IVPs. Do not solve these.

SECTION $-\mathbf{C}($ Total Marks: $1 \times 20=20)$

Q. 7 The concentration of salt x in a homemade soap maker is given as a function of time by

$$
\frac{d x}{d t}=37.5-3.5 x
$$

At the initial time, $t=0$, the salt concentration in the tank is $50 \mathrm{~g} / \mathrm{L}$. Using Runge-Kutta $4^{\text {th }}$ order method and a step size of, $h=1.5 \mathrm{~min}$, what is the salt concentration after 3
minutes?
The exact solution of the ordinary differential equation is given by

$$
x(t)=10.714+39.286 e^{-3.5 t}
$$

Compare the exact solution with the numerical solution and comment on the result.

Data:

TABLE 6.1
Matrices for the Orthogonal Collocation Technique [5] (non-symmetric)*
$[0 \leq x \leq 1, \quad W(x)=1$ in Eq. 6.19]

[Ref: Numerical Methods for Engineers, Gupta S. K., $3{ }^{\text {rd }}$ Edition, New Age International]

