

## UNIVERSITY OF PETROLEUM AND ENERGY STUDIES

## **End Semester Examination, December 2017**

Program: B. Tech(EE)
Subject (Course): LIC
Course Code: ELEG263
Semester - V
Max. Marks: 100
Duration: 3 Hrs

No. of page/s: 01

Attempt all questions.

| SECTION A |                                                                                                                                                                                                                                                                                                                                     | Marks[20] |           |  |
|-----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|-----------|--|
| 1.        | Describe the virtual ground concept for OP AMP IC uA741.                                                                                                                                                                                                                                                                            | [5]       | CO3       |  |
| 2.        | Elaborate the working of peak detector with the help of circuit and waveform                                                                                                                                                                                                                                                        | [5]       | CO3       |  |
| 3.        | Discuss the effect of negative feedback on input and output resistance of OP AMP.                                                                                                                                                                                                                                                   | [5]       | CO2       |  |
| 4.        | Describe the output voltage of an differentiator circuit with OP AMP and discuss the frequency response of ideal & practical differentiator circuit.                                                                                                                                                                                | [5]       | CO2       |  |
|           | SECTION B                                                                                                                                                                                                                                                                                                                           | Marl      | Marks[40] |  |
| 5.        | Draw a dual input, balanced output differential amplifier with $R_C$ =2.2 K $\Omega$ , $R_E$ =4.7 K $\Omega$ , Rin1=Rin2=50 $\Omega$ , +Vcc=10V, -V <sub>EE</sub> = -10V and $\beta$ dc= $\beta$ ac=100 and V <sub>BE</sub> = 0.715V (a) Determine the I <sub>CQ</sub> and V <sub>CEQ</sub> values (b) Determine the voltage gain   | [10]      | CO1       |  |
| 6.        | <ul> <li>(c) Determine the input and output resistance</li> <li>An 8bit A/D converter accepts an input signal of range 0 to 10V.</li> <li>(a) Calculate the minimum value of the input voltage required to generate a change of 1 LSB.</li> <li>(b) What input voltage will generate all 1s at the A/D converter output?</li> </ul> | [10]      | CO4       |  |
| 7.        | <ul> <li>(c) Calculate the digital output for an input voltage of 4.8V.</li> <li>(a) Elaborate circuit of Anti- logarithmic amplifier.</li> <li>(b) Discuss Sample and hold circuit with OP AMP.</li> </ul>                                                                                                                         | [5+5]     | CO3       |  |
| 8.        | <ul><li>(a) Justify the non-inverting configuration of OP AMP is voltage series feedback.</li><li>(b) Derive the expression for voltage to current converter.</li></ul>                                                                                                                                                             | [5+5]     | CO4       |  |
|           | SECTION C                                                                                                                                                                                                                                                                                                                           | Marks[40] |           |  |
| 9.        | Design a wide band pass filter with f <sub>L</sub> =200 Hz, f <sub>H</sub> = 1KHz and passband gain of 4. Also calculate the quality factor of designed filter and draw the frequency response of the filter.                                                                                                                       | [20]      | CO3       |  |
| 10.       | <ul><li>(a) Design and draw an astable multivibrator using IC555 timer for a frequency of 1KHz and a duty cycle of 70%.</li><li>(b) Design and discuss the working of a power supply with 5V DC output with the help of voltage regulator and precision full wave rectifier.</li></ul>                                              | [10+10]   | CO4       |  |

| <b>Roll No:</b> |  |
|-----------------|--|
|-----------------|--|



## UNIVERSITY OF PETROLEUM AND ENERGY STUDIES

## **End Semester Examination, December 2017**

Program: B. Tech(EE)
Subject (Course): LIC
Course Code: ELEG263
Semester - V
Max. Marks: 100
Duration: 3 Hrs

No. of page/s: 01

Attempt all questions.

|     | SECTION A                                                                                                                                                                                                                                                                                                                                                  | Ma        | rks[20]   |  |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|-----------|--|
| 1.  | Draw and discuss the working of successive approximation analog to digital converter.                                                                                                                                                                                                                                                                      | [5]       | CO4       |  |
| 2.  | Discuss and draw precision full wave rectifier with OP-AMP                                                                                                                                                                                                                                                                                                 | [5]       | CO3       |  |
| 3.  | For 741C non inverting OP-AMP with $R_1$ =1 K $\Omega$ , $R_F$ = 10 K $\Omega$ , A=200000, Ri=2 M $\Omega$ , Ro=75 $\Omega$ , fo= 5Hz, supply voltages= ±15V, output voltage swing= ±13V. Compute the $A_F$ , $R_{iF}$ , $R_{oF}$ , $f_F$ , $V_{ooT}$                                                                                                      | [5]       | CO2       |  |
| 4.  | Justify the inverting configuration of OP AMP is voltage shunt feedback.                                                                                                                                                                                                                                                                                   | [5]       | CO2       |  |
|     | SECTION B                                                                                                                                                                                                                                                                                                                                                  |           | Marks[40] |  |
| 5.  | For a single input, balanced output differential amplifier with R <sub>C</sub> =2.2 KΩ, R <sub>E</sub> =4.7 KΩ, Rin1=Rin2=50 Ω, +Vcc=10V, -V <sub>EE</sub> = -10V and βdc=βac=100 and V <sub>BE</sub> = 0.715V  (a) Calculate the I <sub>CQ</sub> and V <sub>CEQ</sub> values  (b) Discuss the voltage gain  (c) Determine the input and output resistance | [10]      | CO1       |  |
| 6.  | Elaborate digital to analog converter and draw & explain the working of –  (a) Binary weighted resistors  (b) R and 2R resistors                                                                                                                                                                                                                           | [10]      | CO4       |  |
| 7.  | Design a circuit with output as summing circuit, scaling circuit and average circuit should be 12V, 6V and 4V respectively.                                                                                                                                                                                                                                | [10]      | CO3       |  |
| 8.  | <ul><li>(a) Derive the expression for current to voltage converter.</li><li>(b) Elaborate circuit of logarithmic amplifier</li></ul>                                                                                                                                                                                                                       | [5+5]     | CO4       |  |
|     | SECTION C                                                                                                                                                                                                                                                                                                                                                  | Marks[40] |           |  |
| 9.  | Design a second order high pass filter with $f_L$ = 1KHz and passband gain of 1.58. Draw the frequency response of the designed filter.                                                                                                                                                                                                                    | [20]      | CO3       |  |
| 10. | i.) Design and discuss working of a sawtooth waveform generator for 10V peak and frequency of 200Hz. Assume V <sub>i</sub> =2V and V <sub>ref</sub> =10V. ii.)Design a monostable multivibrator with IC555 timer for a pulse period of 1ms.                                                                                                                | [10+10]   | CO4       |  |