Roll No: -----

Semester –

Duration

Max. Marks

I

: 100

: 3 Hrs

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES

End Semester Examination, December 2017

Program: B Tech Civil Engg Subject (Course): Transportation Engg-3

Course Code : CEEG 431

No. of page/s: 02

	Section A (Attempt all questions)		
1.	Categorize obstacles in vehicular movement.	5	CO1
2.	Calculate the height of the horse shoe tunnel having a diameter of 10 ft	5	CO2
3.	Enumerate the forces which act on the abutment with a neat diagram	5	CO4
4.	Name the piers 30° 90°	5	CO5
	SECTION B (Attempt all Questions)		7
5.	Explain the uses of pilot tunnel	10	CO2
6.	Sketch a typical head frame and explain its use	10	CO3
7.	What are the common defects in arch bridges?	10	CO4
8.	Explain group action of piles and group efficiency of pile groups.	10	CO5

	SECTION C (Attempt any one of 9 & 11) 10 is compulsory		
9.	Find the dead load bending moment and shear force that can be expected on deck slab bridge for following data	20	
	Assume missing data		
	Clear span 7 meters		
	Width of carriage way = 5.5 meters		
	Width of footpath 500 mm on either side		
	Assume suitable wearing coat		
	Use M25 & Fe 415		
	Loading IRC 70 R tracked loading		
	CARRIAGEWAY WIDTH		CO4, CO5
	0.850 1.200 35 2.900 TRACKED VEHICLE		ITH A PURPOSE
10.	A. Critically review the methods normally used for the estimation of the design discharge at any bridge site B. Distinguish drilling patterns to be adopted in driving shafts in rock	20	CO6, CO3
11.	Give reasons for the following:	20	CO2
	Horse shoe form of tunnel gives working space to the contractor		SS
	2) A tunnel is preferred on routes of strategic importance		15
	3) The portals should be made massive in appearance4) The circular section of tunnel is not suitable for roads or railways		5

Roll No:	

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES

End Semester Examination, December 2017

VII

: 100

: 3 Hrs

Semester –

Program: B Tech Civil Engg Subject (Course): Transportation Engineering -3

Subject (Course): Transportation Engineering -3

Course Code : CEEG 431

Max. Marks

Duration

No. of page/s: 03

	Section A (Attempt all questions)		
1.	Tunnel Label the figure near arrow marks	5	CO1
2.	Explain with a neat sketch the mountings that are used with a drill	5	СО
3.	Enumerate briefly the relative merits of suspension bridges as compared to other types of bridge	5	CO5
4.	Explain sheet piling technique	5	CO6
	SECTION B (Attempt all Questions)		>
5.	What are the factors which determine the size of the tunnel? Explain necessary requirements for decision.	10	CO1
6.	Support the following statements with strong favoring arguments 1) A shield set for tunneling can be moved only in one direction 2) Tunneling with a shield in clayey soils requires gravel packing and grouting 3) A shield should be cylindrical in shape	10	CO2
7.	Explain the features of original bridge report	10	CO6
8.	Write a note on the choice of materials of bridge superstructures	10	CO5
	SECTION C (Attempt any one of 9 & 11) 10 is compulsory		•

$$b_{ef} = \alpha_a \left(1 - \frac{a}{lo} \right) + b_1$$

	$\frac{b}{l_o}$	α for simply supported slab	α for continuous slab	0	for simply supported c slab	α for ontinuous slab			
	0.1	0.40	0.40	1.1	2.60	2.28			
	0.2	0.80	0.80	1.2	2.64	2.36			
	0.3	1.16	1.16 -	1.3	2.72	2.40			
	0.4	1.48	1.44	1.4	2.80	2.48			
	0.5	1.72	1.68	1.5	2.84	2.48			
	0.6	1.96	1.84	1.6	2.88	2.52			
	0.7	2.12	1.96	1.7	2.92	2.56			
	0.8	2.24	2.08	1.8	2.96	2.60			
	0.9	2.36	2.16	1.9	3.00	2.60			
	1.0	2,48	2.24	2 &	3.00	2.60			
				above					
		*							S
10.	2500 the fo B. What	designed maxim cu mt /sec , calcormula L = C \sqrt{Q} is primary lining	ulate the linear as 4.8. ? Give a neat s	waterway ii	n meters, tak	e the value	of C in	20	CO ₄
	wny n	t is made so hea	vy?						\sim
11.		ns for the follow						20	СО
11.	Give reason 1) When dia	ns for the follow	ing	r above sti	ffening of lir	er plates t	pecomes	20	CO
11.	Give reason 1) When dia necessa	ns for the follow ameter of tunne ry	ing el is 3 meter o			·	pecomes	20	CO
11.	Give reason 1) When dia necessa 2) The tunn	ns for the follow	ing el is 3 meter o hields are usu	ally of circ	ular in cross	·	pecomes	20	СО

