

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES

End Semester Examination, December 2017

Program: Int. B.Tech. – ET+IPR Semester – V

Subject (Course): Solar Energy Technology
Course Code: ETEG 304

Max. Marks: 100
Duration: 3 Hrs

No. of page/s: 2

Section A

[4 marks x 5 = 20]

Q.1) (CO3)	With the help of diagram explain the underground aquifer storage concept.
Q.2) (CO5)	With the help of block diagram, explain the operations of stand-alone SPV system.
Q.3) (CO4)	Compare the relative merits and demerits of LiBr-water and aqua-ammonia vapour absorption cooling system.
Q.4) (CO2)	For a parabolic collector of length 2 m, the angle of acceptance is 15 $^{\circ}$. Find the concentration ratio of collector.
Q.5) (CO4)	With the help of schematic diagram, explain the working of distributed collectors solar thermal electric power plant.

Section B

[10 marks x 4 = 40]

- Q.6) (CO5) A 120V, 60 Hz AC motor is to be operated by day from a solar cell array and by night from the 120 V public utilities. A DC to AC converter is available that changes the array DC output into a 120 V, 60 Hz AC with 90% efficiency independent of a load phase angle while the running motor has a DC resistance of 300 Ω and an inductance of 0.3 H. How much power output must the array provide?
- Q.7) (CO5) Draw and explain an equivalent circuit of a practical solar PV cell.