1 UPES

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES

End Semester Examination, December 2017
Program: BTech Non-CIT
Subject (Course): PHYSICS-I
Semester - I
Course Code : PHYS 1001
Max. Marks : 100
No. of page/s: 3
permeability of free space $\mu_{0}=4 \pi \times 10^{-7} \mathrm{H} / \mathrm{m}$, permitivity of free space $\varepsilon_{0}=8.854 \times 10^{-12} \mathrm{~F} / \mathrm{m}$ $\vec{k}=\vec{\gamma}=$ propagation vector, $\omega=$ angular frequency, $\mathrm{n}=$ refractive index of medium.
$c=\frac{1}{\sqrt{\varepsilon_{0} \mu_{0}}}=3 \times 10^{8} \mathrm{~ms}^{-1}$

SECTION A(Attempt all the Questions)			
Q1.	A monochromatic laser light ($\lambda=540 \mathrm{~nm}$) falls on a diffraction grating normally. $5^{\text {th }}$ diffraction maximum is observed at 60 degree on a screen placed 1.25 meter away from the grating. Calculate grating element (d).	[4]	CO1
Q2.	Construct a ($0 \overline{1} 1$) plane within a cubic unit cell. Also draw a [110] direction within the same unit cell.	[4]	CO 2
Q3.	Using Maxwell's equations prove that, $\vec{k} \times \vec{E}=\mu \omega \vec{H}$. Consider wave has $\left.e^{j(k x-\omega t}\right)$ dependence. The directions of \vec{E} and \vec{H} are along y axis and z axis, respectively.	[4]	CO 3
Q4.	Calculate the electromagnetic impedance for an electromagnetic wave travelling through a pure dielectric medium (non magnetic) with relative permittivity $\varepsilon_{\mathrm{r}}=$ 2.5.	[4]	CO 3
Q5.	An auditorium is found to have reverberation time of 1.5 seconds. Calculate the decay constant for the sound energy that falls exponentially in the auditorium.	[4]	CO 4
SECTION B (Attempt all the Questions), $\mathbf{Q 9}$ has internal choice			
Q6.	(a) Describe hexagonal closed packed structure and derive the expression for packing fraction.	[6]	CO2

\begin{tabular}{|c|c|c|c|}
\hline Q11. \& \begin{tabular}{l}
(a) Using Maxwell's equations derive the differential equation for electric field (\(\nabla^{2} \vec{E}+\varepsilon_{0} \mu_{0} \omega^{2} \vec{E}=0\)) associated with an electromagnetic wave travelling through vacuum (along x -direction). Calculate free space impedance \(\mathrm{Z}_{0}\). \\
(b) Calculate ultrasonic frequency that can be generated using magnetostriction method using the given parameters for iron: Young's modulus \(=11.5 \times 10^{10}\) \(\mathrm{N} / \mathrm{m}^{2}\), density \(=7.5 \times 10^{3} \mathrm{~kg} / \mathrm{m}^{3}\), length of the rod, \(l=0.05\) meter. \\
(c) Describe the interferometer method to determine velocity of ultrasonic wave. \\
OR \\
(a) The complex propagation constant for a conducting medium has the real and imaginary part of the form, \(k=\gamma=\sqrt{\mu \varepsilon \omega^{2}+j \sigma \mu \omega}=\alpha+j \beta\). Deduce the expression for \(\alpha\) and \(\beta\) in terms of \(\mu, \varepsilon\) and \(\omega\). Show that for good conductor \(\alpha=\beta .(j=i=\sqrt{ }(-1))\) \\
(b) The volume of a room is \(600 \mathrm{~m}^{3}\) with total wall area of \(220 \mathrm{~m}^{2}\), floor area of \(120 \mathrm{~m}^{2}\), and ceiling area of \(120 \mathrm{~m}^{2}\). The average absorption coefficients for walls \(=0.03\), for ceiling \(=0.80\) and for floor \(=0.06\). Calculate the average absorption coefficient and reverberation time. \\
(c) Using Sabine's reverberation theory derive the expression for total absorption per unit time in the form
\[
W_{A}=\frac{E v}{4} \sum \alpha d s=\frac{E v A}{4}
\] \\
Where, \(E=\) energy per unit volume, \(A=\) total absorption, \(v=\) velocity of sound.
\end{tabular} \& [8]
[4]
[8]

[8]
[8] \& CO3
CO4

CO4

CO3

CO4
CO4

\hline
\end{tabular}

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES

End Semester Examination, December 2017

Program: B. Tech (Non CIT)	Semester -	I
Subject (Course): Physics I	Max. Marks	$: 100$
Course Code : PHYS 1001	Duration	$: 3$ Hrs
No. of page/s: 3		

Instructions:

1. All questions are compulsory.
2. This question paper has three sections; Section A, Section B, and Section C
3. In section A there are total 4 questions, each carrying 5 marks
4. In Section B there are total 4 questions, each carrying 10 marks. Question no. 8 is having an internal choice.
5. In Section C there are total 2 questions, each carrying 20 marks. Question no. 10 is having an internal choice.
6. Draw suitable diagrams wherever required.
7. Your answer should be concise and to the point.

Values of some physical constants:
Velocity of light, $c=3 \times 10^{8} \mathrm{~ms}^{-1}$
Mass of electron, $m_{e}=9.1 \times 10^{-31} \mathrm{~kg}$;
Boltzmann Constant $\left(\mathrm{K}_{\mathrm{B}}\right)=1.38 \times 10^{-23} \mathrm{JK} \mathrm{K}^{-1}$
Permittivity of free space $\left(\epsilon_{0}\right)=8.854 \times 10^{-12} \mathrm{Fm}^{-1}$

Charge of electron, $e=1.6 \times 10^{-19} \mathrm{C}$
Mass of proton/neutron $=1.67 \times 10^{-27} \mathrm{~kg}$
Planck's Constant (h) $=6.6 \times 10^{-34} \mathrm{Jsec}$;
Permeability of free space $\left(\mu_{0}\right)=4 \pi \times 10^{-7} \mathrm{Hm}^{-1}$

	SECTION A (All questions are compulsory)		
Ques 1	Discuss different types of dispersion mechanisms in an Optical Fiber.	[5]	CO1
Ques 2	Illustrate the primitive cell of a FCC (face centered cubic) structure.	[5]	CO2
Ques 3	Write down the Maxwell's equations (in differential form) for time varying fields. Also explain them briefly.	[5]	$\mathrm{CO3}$
Ques 4	Discuss in brief any one mechanism for generation of ultrasonic waves.	[5]	$\mathrm{CO4}$
SECTION B (All questions are compulsory)			
Ques 5	(i) Discuss the important features of spontaneous and stimulated Emission. (ii) A cubic meter of atomic hydrogen at $0^{\circ} \mathrm{C}$ and at atmospheric pressure contains about 2.7×10^{5} atoms (in ground state). Determine the number of atoms in their first excited state $(\mathrm{n}=2)$ at $0^{\circ} \mathrm{C}$ and $5000{ }^{\circ} \mathrm{C}$ (Hint: Energy of Hydrogen atom, $E_{n}=-13.6 \mathrm{eV} / \mathrm{n}^{2}$)	[$5+5]$	CO1

Ques 6	(i) Calculate the velocity and kinetic energy with which the electron strike the target of an X-ray tube operated at 50,000 volts. What is the short-wavelength limit of the continuous spectrum emitted and maximum energy per quantum of radiation? (ii) In 3-dimension (orthogonal coordinates), there are seven crystal systems and fourteen Bravais lattices possible due to crystal symmetry. Name any four crystal systems and corresponding Bravais lattices along with unit cell characteristics.	[$5+5]$	CO2
Ques 7	(i) Derive Maxwell's correction of Ampere's law and explain the significance of displacement current. (ii) A radio station transmits power radially around a spherical region. The desired electric field intensity at a distance of 10 km from the station is $2 \mu \mathrm{~V} / \mathrm{m}$. Calculate the corresponding magnetic field, intensity and power transmitted by the station.	[$5+5]$	CO 3
Ques 8	A room of volume $90 \mathrm{~m}^{3}$ has a total sound absorption of 20 metric Sabine. A sound source having 10 microwatts power output is turned on. If velocity of sound in air $344 \mathrm{~m} / \mathrm{s}$, tabulate and plot a graph for the decay of sound energy density (in $10^{-9} \mathrm{Jm}^{-3}$) for given times: $0,0.05,0.1,0.15,0.2$ and 0.25 sec after the source is switch off $(t=0)$. OR A classroom of $4 \times 6 \times 10$ meters has an average sound absorption coefficient of 0.104. (a) Determine the reverberation time of the class room. (b) Forty students are in classroom and each is equivalent to 0.5 open window unit (OWU) of sound absorption. Evaluate the new reverberation time.	[10]	CO4
	SECTION C (All questions are compulsory)		
Ques 9	(i) With necessary diagrams, explain the construction and working principle of a ruby laser. (ii) Calculate the skip distance and number of reflections per meter for a fiber in which light is entering from air at an angle of 30° with $n_{1}=1.599$ and fiber diameter $60 \mu \mathrm{~m}$. (iii) Show that the expression for inter-planar spacing between two consecutive parallel planes of Miller indices $\{\mathrm{h} k 1\}$ is given by $d_{h k l}=\frac{1}{\sqrt{\frac{h^{2}}{a^{2}}+\frac{k^{2}}{b^{2}}+\frac{l^{2}}{c^{2}}}},$	[5] [5] [10]	$\begin{aligned} & \mathrm{CO1} \\ & \mathrm{CO1} \\ & \mathrm{CO2} \end{aligned}$
Ques 10	(i) Derive an energy conservation principle (Poynting's Theorem) from Maxwell equations. (ii) Show that the rate of absorption of sound energy by the walls of an enclosure is given by $\frac{E_{d} v A}{4}$, where, E_{d} is sound energy density, v is velocity and A is total absorption of the enclosure. Also write expression for intensity of absorbed sound energy.	$\begin{aligned} & {[10]} \\ & {[10]} \end{aligned}$	$\begin{aligned} & \mathrm{CO} \\ & \mathrm{CO4} \end{aligned}$

	OR (i)The time varying wave equation (in \vec{E} filed) for propagation in a linear homogenous and isotropic lossy dielectric medium with conductivity (σ),	[10]	CO3				
permeability (μ) and permittivity (ε) is given by $\nabla^{2} \vec{E}-\gamma^{2} \vec{E}=0$, where $\gamma^{2}=$							
$i \mu \omega(\sigma+i \omega \epsilon) ; \gamma=\alpha+i \beta$ is a propagation constant and ω is angular frequency.							
(a) Derive the expression for phase constant (β) and Attenuation constant (α)							
(b) Deduce the α and β from above relation for a lossless dielectric, good conductor							
and free space.				\quad	(ii) Derive the expression for the following:		
:---	:---	:---					
(a) Growth of sound energy in reverberation chamber							
(b) Decay of sound energy in reverberation chamber and Reverberation time	[10]	CO4					

