Roll No: -----UPES UNIVERSITY OF PETROLEUM AND ENERGY STUDIES End Semester Examination, Dec-2017

Program Name: B. Tech- CS (CCVT, OGI, Big Data, OSS)

Semester – I

Course Name : Physics Course Code : PHYS 1002 No. of page/s: 2 Max. Marks : 100 Duration : 3 Hrs

Instru			
	estions are compulsory. on numbers to be written very clearly.		
	hlighted representations are vectors.		
	SECTION A (All parts are compulsory)		
1.	Convert point (1, 4, -3) to spherical coordinates.	[4]	CO2
2.	State and explain Faraday's law.	[4]	CO3
3.	Calculate, Plot and analyze Galilean velocity addition (u_g) and relativistic velocity addition (u_r) in terms of c v/s u', for given u' = 0.25c, 0.5c, 0.75c and c, when v = 0.75c, where <i>c</i> is the velocity of light.	[4]	CO4
4.	Deduce an expression for the numerical aperture of a given optical fiber.	[4]	CO1
5.	Obtain the relation between group velocity and phase velocity.	[4]	CO5
6 (a)	As determined by O', a lightning bolt strikes at $x'=60m$, $y'=z'=0$ and $t'=8\times10^{-8}$ s. O' has a velocity of 0.6c along x-axis of O. What are the space-time co-ordinates of the strike as determined by O?	[5]	CO4
6 (a) 6 (b)			CO4
7 ()	of core for single mode propagation? If the core diameter is given as 50 μ m, how many modes can propagate through the fiber?	W	
7. (a)	The conducting triangular loop in the given figure carries a y current of 10 A. Find H at (0, 0, 5) due to the side 1 of the loop.		
		[5]	CO3
7. (b)	At what temperature, the ratio of spontaneous and stimulated coefficients are equal. Assume the wavelength to be 5000 Å.	[5]	C01
8	Derive an expression for Compton shift. Why is the Compton effect not observed with visible light?	[8+2]	CO5
9	(a) Explain the construction process involved in the development of a hologram.	[5]	CO1

	(b) Plane $z = 0$ and $z = 4$ carry respectively. Determine H at (a) (1	current $K = -10a_x A/m$ and $K = 10a_x A/m$, , 1, 1) and (b) (0, -3, 10).	[5]	CO3
		OR	[2]	COL
		aser by drawing the energy level diagram.	[5]	CO1
		9, $z=0$ carries a direct current of 10 A along a_{\emptyset}	[5]	CO3
	. Determine H at (0, 0, 4) and (0, 0	, -4).		
	SECTION C	(Question 11 has internal choice)		
10 (a)		that the tangential component of electric field	[2+8]	CO2
. ,	is continuous and the normal compo-	nent of electric displacement is discontinuous		
	when charge density at surface i.e. ρ_s =	≠ 0.		
10 (b)	The uncertainty in the momentum λ superbowl traveling at $40m/s$ is 1×1	Δp of a football thrown by Tom during the 0^{-6} of its momentum. Given Mass = 0.40kg. In football at the same speed and Δp . Calculate	[10]	CO1
11	a (a) The density of gold is 19.3×10^3	kg/m ³ in a frame S that is at rest. Calculate its	[10]	CO4
	-	S' would determine if the frame S' is moving		L
	along the X-axis with a speed 0.90		[10]	CO
		equation in time independent form. Explain	[10]	C
	physical significance of the wave	OR		0
	(a) An airplane is moving with resp determine by earth clocks, how lo by two microseconds?	[10]	CO4	
	(b) An electron is trapped in a one-difference of the Energy and wave function.	[10]	CO5	
	Values of constants:			1
	Constant	Standard Values		5
	Planck's Constant (h)	6.63 x 10 ⁻³⁴ Joule-sec		- >
	Permittivity of free space (ε_o)	8.854 x 10 ⁻¹² Farad/meter		>
	Velocity of Light c	3 x 10 ⁸ m/sec		-
	Boltzmann constant (k _B)	$1.38 \times 10^{-23} \text{ J K}^{-1}$		
	Rest mass of an Electron	9.11 x 10 ⁻³¹ Kg		- V
	Charge of electron	1.6 x 10 ⁻¹⁹ C		0

CONFIDENTIAL

Name of Examination (Please tick, symbol is given)	:	MID		END	ы	SUPPL E
Name of the College (Please tick, symbol is given)	:	COES	ы	CMES		COLS
Program/Course	:	BTECH	I-(CIT)			
Semester	:	I				
Name of the Subject	:	PHYSI	CS			
Subject Code	:	PHYS 1	1002			
Name of Question Paper Setter	:	Dr. GA NIPPA		AND AND	Dr. SATY	YA KRISHNA
Employee Code	:	4000072	22 and 400	00390		
Mobile & Extension	:	7895210	6101 & 95	57017371		
Note: Please mention additi Table/Graph Sheet etc. else			• •			mination such as

Graph sheet is to be provided.

FOR SRE DEPARTMENT

Date of Examination	:	
Time of Examination	:	
No. of Copies (for Print)	:	

Roll No: -----**UPES** UNIVERSITY OF PETROLEUM AND ENERGY STUDIES End Semester Examination, Dec-2017

Program Name: B. Tech- CS (CCVT, OGI, Big Data, OSS)

Semester – I

Course Name : Physics Max. Marks : 100 Course Code : PHYS 1002 Duration : 3 Hrs No. of page/s: 2

	ctions:		
	estions are compulsory. ion numbers to be written very clearly.		
	chlighted representations are vectors.		
<u>c</u>	SECTION A (All parts are compulsory)		
1.	Convert point (1, 4, -3) to cylindrical coordinates.	[4]	CO2
2.	State and explain Ampere's Circuit law.	[4]	CO3
3.	Plot a variation of $\Upsilon = i$ Vs (v/c) for the given values of v. Analyze how Υ depends upon the velocity v. Given v = 0, $6*10^7$, $1.2*10^8$, $1.8*10^8$, $2.4*10^8$, $3*10^8$ m/s.	[4]	CO4
4.	A clock keeps correct time. At what speed should the clock move relative to an observer to lose four minutes in day?	[4]	CO4
5.	Explain pair production and pair annihilation.	[4]	CO5
	SECTION B (Question 9 has internal choice)		d d
6	Derive Einstein's coefficient for absorption, spontaneous emission and stimulated emission. Obtain the relation between them.	[10]	C01
7.	Prove that for a relativistic particle group velocity (v_g) is equal to the particle velocity (v) .	[10]	CO3
8.	Explain Bio-Savart's law. Apply Biot-Savart's law to determine the field due to a straight current carrying filamentary conductor of finite length AB.	[8+2]	CO5
9	 (c) Explain the propagation mechanism in different types of optical fibers. (d) Determine the divergence of the following vector fields: (i) P=x² y z a_x+x z a_z 	[5] [5]	CO1 CO2
	(ii) $Q = \rho \sin \oslash a_{\rho} + \rho^2 z a_{\odot} + z \cos \oslash a_z$ (c) Draw and compare the energy level diagram of ruby laser and He-Ne laser.	[5]	C01
	(d) A homogeneous dielectric ($\epsilon_r = 2.5$) fills region 1 (x < 0) while region 2 (x > 0) is free space. (a) If $D_1 = 12 a_x - 10 a_y + 4 a_z nC/m^2$, find \mathbf{D}_2 and θ_2 .	[5]	CO2
	SECTION C (Question 11 has internal choice)		
10 (a)	Deduce the continuity equation and relaxation time.	[6+4]	CO2

 12 a (c) An observer O' holds 1.00 m stick at an angle of 30° with respect to the positive X'-axis. O' moving in the positive X-X' direction with a velocity 0.8c with respect to the observer O. What are the length and the angle of the stick as measured by observer O. (d) Derive the Schrodinger's wave equation in time dependent form. Explain properties of the wave function. (a) A spaceship moving away from the earth with velocity 0.6 c fires a rocket whose velocity relative to spaceship is 0.7 c (i) away from the earth (ii) towards the earth. What will the velocity of the rocket be as observed from the earth in both the cases? (b) Derive Heisenberg's uncertainty principle and explain the non-existence of an electron inside the nucleus. 	10 (b)	photon of energy E is scattered by an	rgy (KE_{max}) of the recoil electron. Show that a electron initially at rest (rest mass energy, E_0) nergy (KE_{max}) of the recoil electron can be E/E_0).	[10]	C01
(d) Derive the Schrodinger's wave equation in time dependent form. Explain properties of the wave function.[10]CCOR(a) A spaceship moving away from the earth with velocity 0.6 c fires a rocket whose velocity relative to spaceship is 0.7 c (i) away from the earth (ii) towards the earth. What will the velocity of the rocket be as observed from the earth in both the cases?[10]CC(b) Derive Heisenberg's uncertainty principle and explain the non-existence of an electron inside the nucleus.[10]CC	12 :	a (c) An observer O' holds 1.00 m stick X'-axis. O' moving in the positi respect to the observer O. What	x at an angle of 30° with respect to the positive ive X-X' direction with a velocity 0.8c with	[10]	CO4
 (a) A spaceship moving away from the earth with velocity 0.6 c fires a rocket whose velocity relative to spaceship is 0.7 c (i) away from the earth (ii) towards the earth. What will the velocity of the rocket be as observed from the earth in both the cases? (b) Derive Heisenberg's uncertainty principle and explain the non-existence of an electron inside the nucleus. 		(d) Derive the Schrodinger's wave		[10]	C05
the cases? (b) Derive Heisenberg's uncertainty principle and explain the non-existence of an electron inside the nucleus.		velocity relative to spaceship is 0.	e earth with velocity $0.6 c$ fires a rocket whose .7 c (i) away from the earth (ii) towards the	[10]	CO4
		the cases? (b) Derive Heisenberg's uncertainty pr		[10]	CO5
$\begin{tabular}{ c c c c c }\hline \hline Constant & Standard Values \\ \hline Planck's Constant (h) & 6.63 x 10^{-34} Joule-sec \\ \hline Permittivity of free space (ϵ_0) & 8.854 x 10^{-12} Farad/meter \\ \hline Velocity of Light c & 3 x 10^8 m/sec \\ \hline Boltzmann constant (k_B) & 1.38 \times 10^{-23} J K^{-1} \\ \hline Rest mass of an Electron & 9.11 x 10^{-31} Kg \\ \hline \end{tabular}$		Values of constants:			- SC
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$		Constant	Standard Values		
$\begin{array}{c c} Permittivity of free space (\epsilon_o) & 8.854 \times 10^{-12} \ Farad/meter \\ \hline Velocity of Light c & 3 \times 10^8 \ m/sec \\ \hline Boltzmann constant (k_B) & 1.38 \times 10^{-23} \ J \ K^{-1} \\ \hline Rest mass of an Electron & 9.11 \times 10^{-31} \ Kg \end{array}$					
$\begin{tabular}{ c c c c c } \hline Velocity of Light c & 3 x 10^8 \text{ m/sec} \\ \hline Boltzmann constant (k_B) & 1.38 \times 10^{-23} \text{ J K}^{-1} \\ \hline Rest mass of an Electron & 9.11 x 10^{-31} \text{ Kg} \\ \hline \end{tabular}$		Dormittivity of free grace (c)	8.854 x 10 ⁻¹² Farad/meter		
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$		remntivity of nee space (ε_0)			
Rest mass of an Electron9.11 x 10 ⁻³¹ Kg		· · · · · · · · · · · · · · · · · · ·	3 x 10 ⁸ m/sec		
		Velocity of Light c Boltzmann constant (k _B)	$\frac{3 \times 10^8 \text{ m/sec}}{1.38 \times 10^{-23} \text{ J K}^{-1}}$		
Charge of electron 1.6x10 ⁻¹⁹ C		Velocity of Light c Boltzmann constant (k _B) Rest mass of an Electron	$\begin{array}{r} 3 \text{ x } 10^8 \text{ m/sec} \\ \hline 1.38 \times 10^{-23} \text{ J K}^{-1} \\ 9.11 \text{ x } 10^{-31} \text{ Kg} \end{array}$		
		Velocity of Light c Boltzmann constant (k _B)	$\frac{3 \times 10^8 \text{ m/sec}}{1.38 \times 10^{-23} \text{ J K}^{-1}}$		
		Velocity of Light c Boltzmann constant (k _B) Rest mass of an Electron	$\begin{array}{r} 3 \text{ x } 10^8 \text{ m/sec} \\ \hline 1.38 \times 10^{-23} \text{ J K}^{-1} \\ 9.11 \text{ x } 10^{-31} \text{ Kg} \end{array}$		
		Velocity of Light c Boltzmann constant (k _B) Rest mass of an Electron	$\begin{array}{r} 3 \text{ x } 10^8 \text{ m/sec} \\ \hline 1.38 \times 10^{-23} \text{ J K}^{-1} \\ 9.11 \text{ x } 10^{-31} \text{ Kg} \end{array}$		FRSITY WITH A PURPOS
		Velocity of Light c Boltzmann constant (k _B) Rest mass of an Electron	$\begin{array}{r} 3 \text{ x } 10^8 \text{ m/sec} \\ \hline 1.38 \times 10^{-23} \text{ J K}^{-1} \\ 9.11 \text{ x } 10^{-31} \text{ Kg} \end{array}$		INIVERSITY WITH A PL