Name: Enrolment No:								
END SEMESTER EXAMINATIONS, DECEMBER 2017 Course: NUMERICAL METHODS IN ENGINEERING Course Code: CHPL 7003 / MATH 701 Programme: M.Tech Pipeline Engineering Semester: I (ODD-2017-18) Time: 03 hrs. Max. Marks:100 Instructions: Attempt all questions from Section A (each carrying 4 marks); attempt all questions from Section B (each carrying 8 marks); attempt all questions from Section C (each carrying 20 marks).								
Section A (Attempt all questions)								
1.	The table below gives the results of an observation: θ is the observed temperature in degrees centigrade of a vessel of cooling water; t is the time in minutes from the beginning of observation Find the approximate rate of cooling at $t=3$.							
2.	Using Newton's method, find a root between 0 and 1 of $x^{3}=6 x-4$ correct to 4 decimals						[4]	CO2
3.	Solve the following equations by Gauss-elimination method. $3 x+4 y+5 z=18,2 x-y+8 z=13,5 x-2 y+7 z=20$						[4]	CO2
4.	Using Taylor series method, compute $y(0.2)$ given $\frac{d y}{d x}=1-2 x y, y(0)=0$ by considering the terms up to third derivative.						[4]	CO3
5.	Find the regions in which the equation $u_{x x}+4 u_{x y}+\left(x^{2}+4 y^{2}\right) u_{y y}=\sin (x+y)$ is (i) elliptic (ii) hyperbolic (iii) parabolic.						[4]	CO4

SECTION B (Q6-Q9 are compulsory and Q10 has internal choice)			
6.	A tank contains 1000 gallons of oil at $t=0$ hours. The following figure shows the rate of change of the volume for $0 \leq t \leq 50$. Estimate the total amount of oil in the tank at $t=50$ hours.	[8]	CO1
7.	Solve the modified radio activity equation $\frac{d N}{d t}=-\alpha N-\gamma$ using Euler's method with step size 0.5 over the interval $t=0$ to $t=2$ for $\alpha=0.1$ and $\gamma=10$ where $N(0)=1000$.	[8]	CO3
8.	Solve the following system of equations using relaxation method. $\left[\begin{array}{ccc} 10 & -2 & -2 \\ -1 & 10 & -2 \\ -1 & -1 & 10 \end{array}\right]\left[\begin{array}{l} x \\ y \\ z \end{array}\right]=\left[\begin{array}{l} 6 \\ 7 \\ 8 \end{array}\right]$	[8]	CO2
9.	The following system of equations is designed to determine concentrations in a series of coupled reactors as a function of the amount of mass input to each reactor: $\begin{aligned} -3 c_{1}+18 c_{2}-6 c_{3} & =1200 \\ 15 c_{1}-3 c_{2}-c_{3} & =3800 \\ -4 c_{1}-c_{2}+12 c_{3} & =2350 \end{aligned}$ Obtain the concentration values correct to 2 decimals by using Gauss-Seidel iterative technique with initial approximate solution as $\left[c_{1}{ }^{(0)}, c_{2}{ }^{(0)}, c_{3}{ }^{(0)}\right]=[300,220,310]$.	[8]	CO2
10.	Using Crank-Nicholson's scheme, solve $u_{x x}=16 u_{t}, 0<x<1, t>0$ given $u(x, 0)=0, u(0, t)=0, u(1, t)=100 t$. Compute u for one time step in t direction taking $h=0.25$. OR Apply Bender-Schmidt recurrence equation to solve $u_{x x}=32 u_{t}$, taking $h=0.25$ for $t>0,0<x<1$ and $u(x, 0)=0, u(0, t)=0, u(1, t)=t$, up to 5 time steps.	[8]	CO4

SECTION C
 (Q11 is compulsory and Q12A, Q12B have internal choice)

The equations for the deflection y and rotation z of a simply supported beam with a uniformly distributed load of intensity $2 k i p s / f t$ and bending moment $M(x)=10 x-x^{2}$ can be expressed as

$$
\begin{align*}
& \frac{d y}{d x}=z \\
& \frac{d z}{d x}=\frac{10 x-x^{2}}{E I} \tag{10}
\end{align*}
$$

where E is the modulus of elasticity, and I is the moment of inertia of the cross section of the beam.

Taking $E I=3600 \mathrm{kips} / f t, y(0)=0$, and $z(0)=-0.02$, find the deflection at $x=0.5$ and rotation at $x=1$ using fourth order Runge-Kutta method with $\Delta x=0.5$.

Debye's formula for the heat capacity C_{V} of copper is given by the formula $C_{V}=9 * N * K * g(u)$ where

$$
g(u)=u^{3} \int_{0.1}^{1 / u} \frac{x^{4} e^{x}}{\left(e^{x}-1\right)^{2}} d x
$$

11.B

The terms in the equation are:
$\mathrm{N}=$ number of particles in the solid, $\mathrm{K}=$ Boltzmann constant $=1.38 \times 10^{-23}, \mathrm{u}=\mathrm{T} / \varnothing$, $\mathrm{T}=$ absolute temperature and $\emptyset=$ Debye temperature $=343.5 \mathrm{~K}$.

Compute the number of particles if $C_{V}=40$ units and $T=343.5 \mathrm{~K}$ by using an appropriate numerical integration technique.

A steady state heat balance for a rod can be represented as $\frac{d^{2} T}{d x^{2}}-0.15 T=0$. Considering four sub intervals, obtain a solution for a 2 meter rod with $T(0)=240 \& T(2)=150$ by finite difference technique.
12.A

OR

Apply Galerkin's method to the boundary value problem $y^{\prime \prime}+y+x=0$, $(0 \leq x \leq 1), y(0)=y(1)=0$, to find the coefficients of the approximate solution $\bar{y}(x)=c_{1} x(1-x)+c_{2} x^{2}(1-x)$.

12.B	Given the values of $u(x, y)$ on the boundary of the square in the figure below. Find the initial approximate values of $u(x, y)$ satisfying the Laplace equation $\nabla^{2} u=0$ at the pivotal points by standard/diagonal five point formula and tabulate the values of $u(x, y)$ obtained by perform two iterations of Liebmann's iteration process. OR Solve the partial differential equation $\nabla^{2} u=-10\left(x^{2}+y^{2}+10\right)$ over the square with sides $x=0=y, x=3=y$ with $u=0$ on the boundary and mesh length $=1$.	[10]	CO4

