Name:

Enrolment No:

END SEMESTER EXAMINATIONS, DECEMBER 2017

Course: NUMERICAL METHODS IN ENGINEERING

Course Code: CHPL 7003 / MATH 701 Programme: M.Tech Pipeline Engineering

Semester: I (ODD-2017-18)

Time: 03 hrs. Max. Marks:100

Instructions:

Attempt all questions from **Section A** (each carrying 4 marks); attempt all questions from **Section B** (each carrying 8 marks); attempt all questions from **Section C** (each carrying 20 marks).

Section A (Attempt all questions)

1.	The table below gives the results of an observation: θ is the observed tempera in degrees centigrade of a vessel of cooling water; t is the time in minutes from beginning of observation		[4]	CO1
2.	Using Newton's method, find a root between θ and t of t of t of t decimals	to 4	[4]	CO2
3.	Solve the following equations by Gauss-elimination method. $3x + 4y + 5z = 18, 2x - y + 8z = 13, 5x - 2y + 7z = 20$		[4]	CO2
4.	Using Taylor series method, compute $y(0.2)$ given $\frac{dy}{dx} = 1 - 2xy$, $y(0) = 0$ considering the terms up to third derivative.) by	[4]	CO3
5.	Find the regions in which the equation $u_{xx} + 4u_{xy} + (x^2 + 4y^2)u_{yy} = \sin(x +$	+ <i>y</i>)	[4]	CO4

SECTION B					
6.	A tank contains 1000 gallons of oil at $t=0$ hours. The following figure shows the rate of change of the volume for $0 \le t \le 50$. Estimate the total amount of oil in the tank at $t=50$ hours. $r \text{ (gallons per hour)} \qquad r = \frac{dV}{dt}$ 200 -200 $10 20$ $-10 20$ $-10 20$ $-10 20$ $-10 20$ $-10 20$ $-10 20$ $-10 20$ $-10 20$ $-10 20$ $-10 20$ $-10 20$ $-10 20$ $-10 20$ $-10 20$ $-10 20$ $-10 20$ $-10 20$	[8]	CO1		
7.	Solve the modified radio activity equation $\frac{dN}{dt} = -\alpha N - \gamma$ using Euler's method with step size 0.5 over the interval $t=0$ to $t=2$ for $\alpha=0.1$ and $\gamma=10$ where $N(0)=1000$.	[8]	СО3		
8.	Solve the following system of equations using relaxation method. $ \begin{bmatrix} 10 & -2 & -2 \\ -1 & 10 & -2 \\ -1 & -1 & 10 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 6 \\ 7 \\ 8 \end{bmatrix} $	[8]	CO2		
9.	The following system of equations is designed to determine concentrations in a series of coupled reactors as a function of the amount of mass input to each reactor: $ -3c_1 + 18c_2 - 6c_3 = 1200 $ $15c_1 - 3c_2 - c_3 = 3800 $ $-4c_1 - c_2 + 12c_3 = 2350 $ Obtain the concentration values correct to 2 decimals by using <i>Gauss-Seidel</i> iterative technique with initial approximate solution as $ [c_1^{(0)}, c_2^{(0)}, c_3^{(0)}] = [300, 220, 310]. $	[8]	CO2		
10.	Using Crank-Nicholson's scheme, solve $u_{xx} = 16u_t$, $0 < x < 1$, $t > 0$ given $u(x,0) = 0$, $u(0,t) = 0$, $u(1,t) = 100t$. Compute u for one time step in t direction taking $h = 0.25$. OR Apply Bender-Schmidt recurrence equation to solve $u_{xx} = 32u_t$, taking $h = 0.25$ for $t > 0$, $0 < x < 1$ and $u(x,0) = 0$, $u(0,t) = 0$, $u(1,t) = t$, up to 5 time steps.	[8]	CO4		

SECTION C (Q11 is compulsory and Q12A, Q12B have internal choice)						
11.A	The equations for the deflection y and rotation z of a simply supported beam with a uniformly distributed load of intensity 2 kips/ft and bending moment $M(x) = 10x - x^2$ can be expressed as					
	$\frac{dy}{dx} = z$					
	$\frac{dz}{dx} = \frac{10x - x^2}{EI}$	[10]	CO3			
	where <i>E</i> is the modulus of elasticity, and <i>I</i> is the moment of inertia of the cross section of the beam.					
	Taking $EI=3600$ kips/ft, $y(0)=0$, and $z(0)=-0.02$, find the deflection at $x=0.5$ and rotation at $x=1$ using fourth order Runge-Kutta method with $\Delta x=0.5$.					
11.B	Debye's formula for the heat capacity C_V of copper is given by the formula $C_V = 9 * N * K * g(u)$ where $g(u) = u^3 \int_{0.1}^{1/u} \frac{x^4 e^x}{(e^x - 1)^2} dx$					
	The terms in the equation are: N=number of particles in the solid, K=Boltzmann constant= 1.38×10^{-23} , $u = T/\emptyset$,	[10]	CO1			
	T = absolute temperature and \emptyset =Debye temperature=343.5 K. Compute the number of particles if $C_V = 40$ units and $T = 343.5$ K by using an appropriate numerical integration technique.					
12.A	A steady state heat balance for a rod can be represented as $\frac{d^2T}{dx^2} - 0.15T = 0$. Considering four sub intervals, obtain a solution for a 2 meter rod with $T(0) = 240 \& T(2) = 150$ by finite difference technique.	[10]	CO3			
	Apply Galerkin's method to the boundary value problem $y'' + y + x = 0$, $(0 \le x \le 1)$, $y(0) = y(1) = 0$, to find the coefficients of the approximate solution $\bar{y}(x) = c_1 x(1-x) + c_2 x^2(1-x)$.					
