

UNIVERSITY OF PETROLEUM & ENERGY STUDIES DEHRADUN End Somester Examination December 2017

End Semester Examination – December, 2017

Program/course: M.TECH	Semester – I
Subject: Numerical Methods for Nuclear Engineering	Max. Marks: 100
Code: MATH-7004	Duration: 3 Hrs
No. of page/s: 2	

Instructions:

Attempt all questions from **Section A** (each carrying 4 marks); attempt all questions from **Section B** (each carrying 10 marks); attempt all questions from **Section C** (each carrying 20 marks).

Section A

- 1. Prove that $E \equiv e^{hD}$, where D is the differential operator, E is shift operator and h is the interval of differencing. [4]
- 2. Derive Newton-Raphson iteration formula for finding the positive square root of a real number *a*. [4]
- 3. Explain by graph how Fixed-point iteration formula x_{n+1}=φ(x_n), n≥1 converges for the condition |φ'(x)|<1 for some x∈(a,b); where (a,b) is the interval bracketing the root of f(x)=0.
- 4. Consider $\frac{dy}{dx} = 1 + \frac{x}{1!} + \frac{x^2}{2!} + \frac{x^3}{3!} + \dots$ with y(0) = 1. Find the approximate value of y(1) using Taylor's series method, given h = 1. [4]

5. If the fourth order divided difference of $f(x)=kx^4+5x^3+3x+2, k \in \mathbb{R}$, at the points 0.1,0.2,0.3,0.4,0.5 is 5, then find the value of k. [4]

Section B

All questions are compulsory.

6. The fourth order Runge-iKutta method

$$u_{j+1} = u_j + \frac{1}{6} [K_1 + 2K_2 + 2K_3 + K_4]$$

is used to solve the initial value problem:

$$\frac{du}{dt}=u, u(0)=\alpha.$$

If u(1)=1 is obtained by taking the step size h=1, then find the value of α . [10]

- 7. Solve $u_t = 5u_{xx}$ with u(0,t) = 0; u(5,t) = 60 and $u(x,0) = \begin{cases} 20x \text{ for } 0 < x \le 3 \\ 60 \text{ for } 3 < x \le 5 \end{cases}$; for five time steps taking h=1 by using Bender-Schmidt method. [10]
- Let α be a root of f(x)=0 which is equivalent to $x=\varphi(x)$. Let I be the interval 8. containing α and $|\varphi'(x)| < 1$ for all x in I. Using this scheme, what is the approximate value of α correct to two decimal places if $f(x) = \cos x - 3x + 1$ and I = (0, 1). [10]
- 9. Consider a function $\varphi(x) = (x)$, where (x) is the integer closest to real number x(if there are two such numbers, select the greater one). Apply numerical integration to evaluate $\int_{1}^{1} \varphi(x) dx$, by dividing the interval (1,3) into 10 equal sub- intervals. [10]

OR

Solve $u_t = u_{xx}$ with u(x,0) = 0; u(0,t) = 0 and u(1,t) = 1. Compute u for t = 1/8 in [10] two time steps, using Crank-Nicholson's method.

Section C

All questions are compulsory.

10. Let f(x) be a differentiable function such that $\frac{d^3f}{dx^3} = 1$ for all $x \in [0,3]$. If p(x) is the quadratic polynomial which interpolates f(x) at x=0, x=2 and x=3, then find the value of f(1) - p(1). [20]

OR

- **a.** Given the differential equation: $(y^2+1)dy = x^2 dx$ with the initial condition y=0when x=0. Use Picard's method to obtain y for x=0.25 correct to three decimal places. [10]
- **b.** Consider the initial value problem:

$$\frac{dy}{dx} = f(x, y), y(x_0) = y_0.$$

value

The aim is to compute the value of $y_1 = y(x_1)$, where $x_1 = x_0 + h(h > 0)$. At $x = x_1$, if the y_1 of is obtained by the straight line passing through (x_0, y_0) and having slope equal to the slope of the curve y(x) at $x = x_0$, then identify

the method and calculate y(0.1) if $f(x, y) = \frac{y-x}{y+x}$ and $x_0 = 0, y_0 = 1, h = 0.02$. [10]

The matrix $A = \begin{bmatrix} 1 & 1 & 1 \\ 2 & 1 & 2 \\ 1 & 3 & 2 \end{bmatrix}$ can be decomposed uniquely into the product A = LU, where 11. $L = \begin{bmatrix} 1 & 0 & 0 \\ l_{21} & 1 & 0 \\ l_{31} & l_{32} & 1 \end{bmatrix} \text{ and } U = \begin{bmatrix} u_{11} & u_{12} & u_{13} \\ 0 & u_{22} & u_{23} \\ 0 & 0 & u_{23} \end{bmatrix}.$

Let $x \in R^3 \wedge b = [1, 1, 1]^t$.	
Find the solution of the system $Ax = b$ where $x = [x_1, x_2, x_3]^t$	[20]
OR	

Solve the system of equations x+y+z=1, x+2y+3z=1, x+2y+3z=3by Choleski decomposition method. [20]

