UNIVERSITY OF PETROLEUM \& ENERGY STUDIES
 DEHRADUN

End Semester Examination - December, 2017

Program/course: M.TECH
Subject: Numerical Methods for Nuclear Engineering
Code: MATH-7004

Semester - I
Max. Marks: 100
Duration: 3 Hrs

No. of page/s: 2

Instructions:

Attempt all questions from Section (each carrying 4 marks); attempt all questions from Section B (each carrying 10 marks); attempt all questions from Section C (each carrying 20 marks).

Section A

1. Prove that $E \equiv e^{h D}$, where D is the differential operator, Eis shift operator and h is the interval of differencing.
2. Derive Newton-Raphson iteration formula for finding the positive square root of a real number a.
3. Explain by graph how Fixed-point iteration formula $x_{n+1}=\varphi\left(x_{n}\right), n \geq 1$ converges for the condition $\left|\varphi^{\prime}(x)\right|<1$ for some $x \in(a, b)$; where (a, b) is the interval bracketing the root of $f(x)=0$.
4. Consider $\quad \frac{d y}{d x}=1+\frac{x}{1!}+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\ldots$. with $y(0)=1$. Find the approximate value of $y(1)$ using Taylor's series method, given $h=1$.
5. If the fourth order divided difference of $f(x)=k x^{4}+5 x^{3}+3 x+2, k \in R$, at the points $0.1,0.2,0.3,0.4,0.5$ is 5 , then find the value of k. [4]

Section B

All questions are compulsory.

6. The fourth order Runge-iKutta method
$u_{j+1}=u_{j}+\frac{1}{6}\left[K_{1}+2 K_{2}+2 K_{3}+K_{4}\right]$
is used to solve the initial value problem:

$$
\frac{d u}{d t}=u, u(0)=\alpha .
$$

If $u(1)=1$ is obtained by taking the step size $h=1$, then find the value of α.
7. Solve $u_{t}=5 u_{x x}$ with $u(0, t)=0 ; u(5, t)=60$ and $u(x, 0)=\left\{\begin{array}{r}20 x \text { for } 0<x \leq 3 \\ 60 \text { for } 3<x \leq 5\end{array}\right.$; for five time steps taking $h=1$ by using Bender-Schmidt method.
8. Let α be a root of $f(x)=0$ which is equivalent to $x=\varphi(x)$. Let I be the interval containing α and $\left|\varphi^{\prime}(x)\right|<1$ for all x in I. Using this scheme, what is the approximate value of α correct to two decimal places if $f(x)=\cos x-3 x+1$ and $I=(0,1)$. [10]
9. Consider a function $\varphi(x)=(x)$, where (x) is the integer closest to real number x (if there are two such numbers, select the greater one). Apply numerical integration to evaluate $\int_{1}^{3} \varphi(x) d x$, by dividing the interval $(1,3)$ into 10 equal sub- intervals.

OR

Solve $u_{t}=u_{x x}$ with $u(x, 0)=0 ; u(0, t)=0$ and $u(1, t)=1$. Compute u for $t=1 / 8$ in two time steps, using Crank-Nicholson's method.

Section C

All questions are compulsory.

10. Let $f(x)$ be a differentiable function such that $\frac{d^{3} f}{d x^{3}}=1$ for all $x \in[0,3]$. If $p(x)$ is the quadratic polynomial which interpolates $f(x)$ at $x=0, x=2$ and $x=3$, then find the value of $f(1)-p(1)$.

OR

a. Given the differential equation: $\left(y^{2}+1\right) d y=x^{2} d x$ with the initial condition $y=0$ when $x=0$. Use Picard's method to obtain y for $x=0.25$ correct to three decimal places.
b. Consider the initial value problem:

$$
\begin{equation*}
\frac{d y}{d x}=f(x, y), y\left(x_{0}\right)=y_{0} . \tag{10}
\end{equation*}
$$

The aim is to compute the value of $y_{1}=y\left(x_{1}\right)$, where $x_{1}=x_{0}+h(h>0)$. At $x=x_{1}$, if the value of y_{1} is obtained by the straight line passing through $\left(x_{0}, y_{0}\right)$ and having slope equal to the slope of the curve $y(x)$ at $x=x_{0}$, then identify the method and calculate $y(0.1)$ if $f(x, y)=\frac{y-x}{y+x}$ and $x_{0}=0, y_{0}=1, h=0.02$.
11. The matrix $A=\left[\begin{array}{lll}1 & 1 & 1 \\ 2 & 1 & 2 \\ 1 & 3 & 2\end{array}\right]$ can be decomposed uniquely into the product $A=L U$, where

$$
L=\left[\begin{array}{ccc}
1 & 0 & 0 \\
l_{21} & 1 & 0 \\
l_{31} & l_{32} & 1
\end{array}\right] \text { and } U=\left[\begin{array}{ccc}
u_{11} & u_{12} & u_{13} \\
0 & u_{22} & u_{23} \\
0 & 0 & u_{23}
\end{array}\right] .
$$

Let $x \in R^{3} \wedge b=[1,1,1]^{t}$.
Find the solution of the system $A x=b$ where $x=\left[x_{1}, x_{2}, x_{3}\right]^{t}$
OR
Solve the system of equations
$x+y+z=1, x+2 y+3 z=1, x+2 y+3 z=3$
by Choleski decomposition method.

