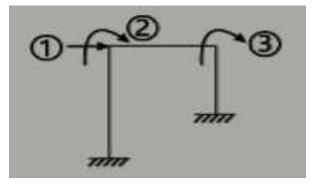
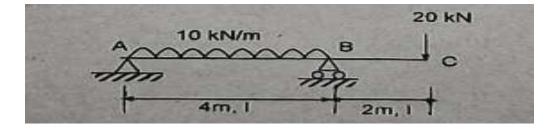
UPES

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES

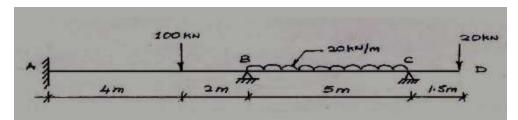
End Semester Examination, December 2017

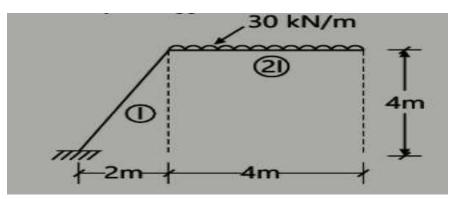

Program: M. Tech (Structures)	Semester – I	
Subject (Course): Matrix methods of structural Analysis	Max. Marks : 100	
Course Code : CIVL 7003	Duration : 3 H	rs
No. of page/s: 3	Paper: I	

NOTE: Answer all questions from Part-A. Answer all questions from Part-B. Answer both questions from part-C. **Missing data should be suitably assumed & mention clearly**

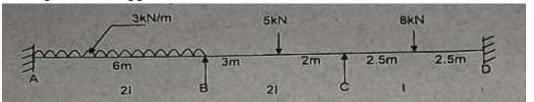

<u>PART – A</u>

Q.1 Explain Structure & element coordinates with suitable example	4 Marks	CO3	
Q.2 Explain difference between kinematic indeterminacy of truss & fra	ame. 4 Mark	s CO1	
Q.3 How do we assemble element stiffness to global stiffness matrix.	4 Marks	CO4 & CO5	
Q.4 Explain the significance of generalized coordinates?	4 Marks	CO4	
Q.5 Write down element flexibility matrix for beam & truss element?	4 Marks	CO1	
<u>PART – B</u>			

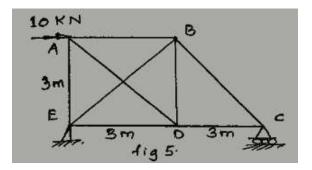

Q.6 Generate the flexibility & stiffness matrix for the frame element shown in Figure below. Adopt element approach. 10 Marks CO5


Q.7 Determine the deflection at point B for the beam shown in figure below. Take the value of $EI = 2400 \text{kN.m}^2$. Adopt element approach. 10 Marks CO2

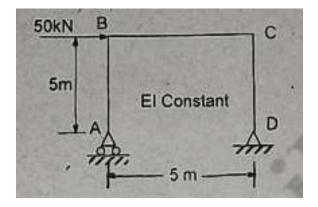
Q.8 Analyze the continuous beam shown in figure below by flexibility method. Draw B.M.D &S.F.D. Adopt element approach.10 MarksCO1 & CO5



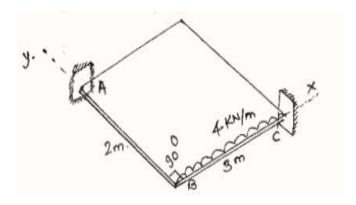
Q.9 Analyze the frame shown in figure below by flexibility method. DrawB.M.D. Adoptelement approach.10 MarksCO1 & CO5


OR

Q.10 Analyze the beam shown in figure below by Stiffness method. Draw B.M.D & S.F.D for the same. Adopt element approach 10 Marks CO3 & CO5



Q.11 Analyze the statically indeterminate pin jointed truss shown in figure below & determine the bar forces. The cross section & E are same for all the members. Adopt element approach. CO3 & CO5 20 Marks


Q.12 Analyze the frame shown in figure below by stiffness method. Adopt element Approach. 20 Marks CO3 & CO4

OR

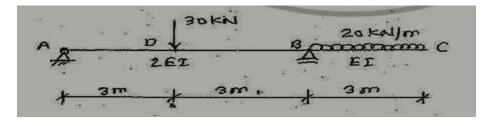
Q.13 Using structure approach develop the stiffness matrix for grid structures as shown in figure below. Take $E = 2X10^5$. $I = 2 X 10^5 mm^4$. $G = 0.8 X 10^8 Mpa$.

UPES

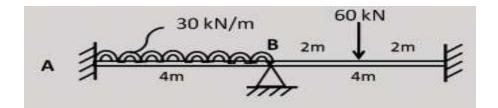
UNIVERSITY OF PETROLEUM AND ENERGY STUDIES

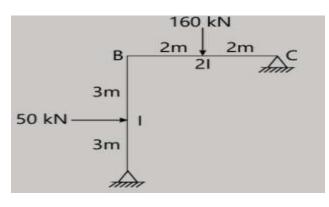
Program: M. Tech (Structures)	Semester – I
Subject (Course): Matrix methods of structural analysis	Max. Marks : 100
Course Code : CIVL 7003	Duration : 3 Hrs
No. of page/s: 3	Paper: II

NOTE: Answer all questions from Part-A. Answer all questions from Part-B. Answer both questions from part-C. Missing data should be suitably assumed & mention clearly

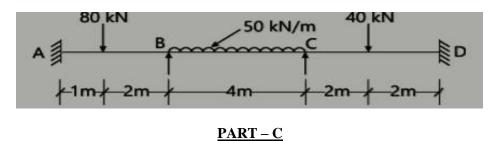

PART – A Q.1 Explain why stiffness matrix is symmetric. 4 Marks CO3 Q.2 what are requirements to be satisfied for analyzing structure. 4 Marks CO1 Q.3 Develop the relationship between member flexibility matrix [Fm] & structure flexibility matrix. 4 Marks CO5 Q.4 Explain element & structure coordinate with suitable example. 4 Marks CO3 Q.5 Prove that flexibility matrix is inverse of stiffness matrix. 4 Marks CO1 & CO2

PART – B

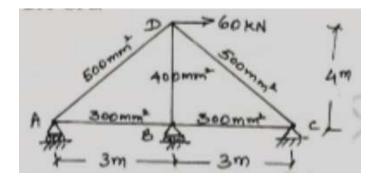

Q.6 Generate the flexibility & stiffness matrix for the beam element shown in Figure below. Adopt element approach. 10 Marks CO5

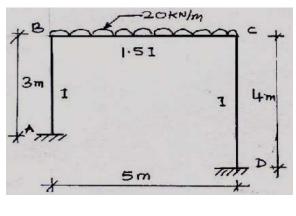

Q.7 Determine the maximum deflection at Point D for the beam shown in figure below. Take the value of EI = 2600kN.m². Adopt element approach. 10 Marks CO2

Q.8 Analyze the continuous beam shown in figure below by flexibility method. Draw B.M.D &S.F.D. Adopt element approach.10 MarksCO1 & CO5

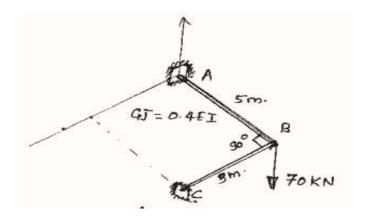


Q.9 Analyze the frame shown in figure below by flexibility method. DrawB.M.D. Adoptelement approach.10 MarksCO1 & CO5




Q.10 Analyze the beam shown in figure below by Stiffness method. DrawB.M.D & S.F.D forthe same. Adopt element approach10 MarksCO3 & CO5

Q.11 Analyze the statically indeterminate pin jointed truss shown in figure below & determine the bar forces. The cross section & E are same for all the members. Adopt element approach. CO3 & CO5 20 Marks



Q.12 Analyze the frame shown in figure below by stiffness method. **Adopt element Approach** 20 Marks CO3 & CO4

OR

Q.13 Analyze & draw B.M.D for the grid frame shown in figure below by stiffness method. 20 Marks CO2 & CO5

