1) UPES

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES

End Semester Examination, December 2017

Program: M. Tech. CFD
Subject (Course): Finite Difference and Finite Volume Methods
Course Code: ASEG7005
No. of page/s: 02
Section-A [5 X 4 = 20 Marks]

Semester - I
Max. Marks : 100
Duration : $\mathbf{3} \mathbf{~ H r s}$

1. Find a forward difference approximation of $O(\Delta x)$ for $\frac{\partial^{4} f}{\partial x^{4}}$.
2. What is the stability requirement of an explicit finite difference equation produced from the model equation $\frac{\partial u}{\partial t}=\propto\left[\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial x^{2}}\right]$.
3. Define the following terms:
a) Diffusion number
b) Approximate factorization
4. Explain the algorithm of the Jacobi Iteration method applied to a parabolic partial differential equation.
5. Differentiate between explicit and implicit methods for converting partial differential equations into finite differential equations.

$\underline{\text { Section-B [4 X 10 = } 40 \text { Marks] }}$

6. Determine an approximate backward difference representation for $\frac{\partial^{3} f}{\partial x^{3}}$ which is of order (Δx), given evenly spaced grid points by means of:
(a) Taylor series expansions.
(b) A backward difference reccurence formulae
(c) A third-degree polynomial passing throug four points.
7. Explain with proper example how a pentadiagonal coefficient matrix can be reduced to two sets of tridiagonal coefficient matrix to be solved in sequence.
8. Given the function $f(x)=\frac{1}{4} x^{2}$, compute the first derivative of f at $x=2$ using forward and backward differencing of order (Δx). Compare the results with a central differencing of $O(\Delta x)^{2}$ and the exact analytical value. Repeat the computations for a step size of 0.4.
9. Given the following data, compute $f^{\prime}(5), f^{\prime}(7)$ and $f^{\prime}(9)$. Use finite difference of order (Δx). Compare the results to the values obtained by finite differencing of order $(\Delta x)^{2}$.

x	5	6	7	8	$\mathbf{9}$
$f(x)$	25	36	49	64	81

Section-C [2 X 20 = 40 Marks]

10. Derive and explain the following methods used for solving the parabolic equation:

$$
\frac{\partial u}{\partial t}=\propto \frac{\partial^{2} u}{\partial x^{2}}
$$

a) The FTCS method.
b) The Richardson method
c) The DuFort-Frankel method
d) The Laasonen Method
e) The Crank-Nicolson method

State clearly the advantages and the stability criteria for each of the methods.
11. Derive the explicit Mac-Cormack time marching algorithm for the solution of transient Euler equations in 2-Dimensions.

OR

Consider the model equation:

$$
a \frac{\partial u}{\partial x}=\vartheta \frac{\partial^{2} u}{\partial y^{2}}
$$

(a) Write an explicit formulation using a first-order forward differencing in x and a second-order central differencing in y.
(b) Use von Neumann stability analysis to determine the stability requirement of the scheme.

