

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES

End Semester Examination, December 2017

Program: B. Tech Electrical Engineering.	Semester – V			
Subject (Course): Electronic Communication	Max. Marks	: 100		
Course Code : ELEG 308	Duration	: 3 Hrs		
No. of page/s:				

Note: 1) Answer in brief and to the points.
2) Answer all questions from part A and part C and any 05 from part B

Part A

- [4×5=20]
- 1. Compare the **two** widely used **analog communication modulation techniques** and comment on the **better** of the two.
- 2. Compare the simplest **FSK** and **PSK** scheme based on the criteria of choosing the suitable digital modulation technique.
- 3. Describe the Delta Modulation system. On what ground **DM** is useful than **PCM**. Comment on its drawbacks also.
- 4. Draw Manchester and AMI line coding of 1100010001. Where they have find use?

Part B

 $[8 \times 5 = 40]$

- 5. Define sampling and its condition. Find the sampling frequency and separation between two pulses of signal $m(t) = 10 \operatorname{Cos}^2 6280t$.
- 6. What is TDM? How do you calculate the **rate of T1 line**? A signal containing two frequencies of **10 kHz** and **5 kHz** is converted into **binary digits** using PCM with the help of a **quantiser** of **64 levels**. Determine the **rate** of **transmission** and **SNR**.

UNIVERSITY WITH A PURPOSE

- 7. Draw the spectrum of Binary Phase Shift Keying and Binary Frequency Shift Keying and calculate their bandwidth. The carrier frequency is 100 MHz and the bit rate is 500kbps.
- 8. Deduce the formula for finding the **total power** of **DSB amplitude modulated** signal. When a broadcast AM transmitter is modulated by 25%, its power is 12 kW. What will be the **carrier power** alone? Find the **efficiency** also.
- 9. Design a typical **FM transmitter** using **Armstrong** method operating at 96 MHz. Consider the **carrier frequency** of being 100 kHz, and the **frequency deviation** of 75 kHz. Write the notation of frequency at each point.
- 10. Design a MODEM using **binary digital phase modulation technique**. The carrier frequency is 50 MHz and the bit rate is 50 kbps. Write the notation of frequency at each point.

Part C

- 11. If an analog message signal is represented as: $\mathbf{m}(t) = \mathbf{Cos} \ \mathbf{5000}\pi t + \mathbf{Cos} \ \mathbf{1500}\pi t$, then what will be the separation, in time, between two consecutive sampled pulse train. The signal is then quantized and converted into stream of 1 and 0. If the number of quantization level is increased from 64 to 256 in PCM, then how much the rate of transmission and **SQR** will be changed?
- 12. Code the following set of message and probability using **Shannon-Fano Coding** and **Huffmann Coding**. Write down the observation.

[M]	=	M_1	M_2	M_3	M_4	M_5	M_6	M_7	M_8
[P]	=	0.25	0.15	0.12	0.11	0.10	0.09	0.08	0.10

 $[2 \times 20 = 40]$

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES

End Semester Examination, December 2017

Program: B. Tech Electrical Engineering.	Semester – V			
Subject (Course): Electronic Communication	Max. Marks			
Course Code : ELEG 308	Duration			
No. of page/s:				

Note: 1) Answer in brief and to the points. 2) Answer all questions from part A and part C and any 05 from part B

- Part A
- 1. Make a comparison between the **two digital modulation techniques** based on the Binary shifting of **Frequency** and **Phase**. Also state their application based on the comparison.
- 2. Draw both types of **Bipolar** line coding for the bit sequence of **1000110001**. State their usefulness.
- 3. Comment on the advantages and disadvantages of Amplitude Modulation and Frequency Modulation. State their application also.
- 4. Describe the DM system. What are its limitations? What are the advantages and disadvantages of PCM over DM? Give two precise points each.

Part B

$[8 \times 5 = 40]$

:100

: 3 Hrs

 $[4 \times 5 = 20]$

- 5. Define Nyquist criteria of sampling. Calculate the sampling frequency and qunatisation level of signal $m(t) = 16 \text{ Cos}^2 31400t$. The step size is 2 volt.
- 6. Define TDM and calculate the **rate** of **E1 line**. A signal is represented as $v(t) = A \cos 2\pi \times 12000t + B \sin 2\pi \times 15000t$. The signal is digitized using PCM. The no of levels in the quantiser is 128. Determine the rate of transmission and SNR.

- 7. Draw the spectrum of Binary Phase Shift Keying and Binary Frequency Shift Keying and calculate their bandwidth. The carrier frequency is 10 MHz and the bit rate is 50kbps.
- 8. Deduce the formula for finding the **efficiency** of a **full carrier double side band amplitude modulated** signal. When a broadcast AM transmitter is modulated by 50% with career power of 6 kW, find its **efficiency** and **total** transmitted power.
- 9. Design a typical **FM transmitter** using **Armstrong** method operating at 96 MHz. Consider the **carrier frequency** of being 100 kHz, and the **frequency deviation** of 75 kHz. Write the notation of frequency at each point.
- 10. Design a MODEM using **Quaternary phase modulation** technique. **Compare** it with the MODEM design using binary phase shift keying.

Part C

 $[2 \times 20 = 40]$

- 11. If an analog message signal is represented as: $m(t) = \cos 5000\pi t + \cos 1500\pi t$, then what will be the separation, in time, between two consecutive sampled pulse train. The signal is then quantized and converted into stream of 1 and 0. If the number of quantization level is decreased from to 256 to 128 in PCM, then how much the rate of transmission and SQR will be changed?
- Code the following set of message and probability using Shannon-Fano Coding and Huffmann Coding. Write down the observation.

[M]	=	M_1	M_2	M_3	M_4	M_5	M_6	M_7	M_8	
[P]	=	0.15	0.25	0.06	0.11	0.10	0.09	0.14	0.10	
