

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES

End Semester Examination, December 2017

Program: Btech CS+L Semester – 5th

Subject (Course): Design and Analysis of Algorithm

Course Code : CSEG320

Max. Marks : 100

Duration : 3 Hrs

No. of page/s: 2

Instructions: Attempt all questions from Section-A (each question carrying 5 marks); Section-B (each question carrying 10 marks) and Section-C (each question carrying 20 marks).

SECTION-A $(4 \times 5 = 20)$

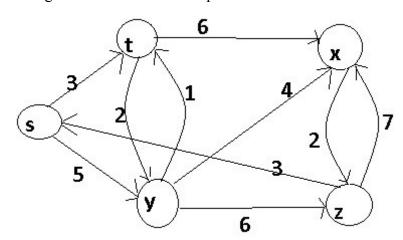
1. Illustrate the operation of counting sort on the following array.

$$A = \langle 6, 0, 2, 9, 4, 5, 3, 2, 1, 0, 3, 5, 6, 7, 7, 8, 7, 9, 0, 1, 3, 4, 6, 1, 3, 2 \rangle$$

2. Find big oh (O) and big theta (θ) notations for the following function:

$$f(n) = 9n^2 + 2n + 16$$

- 3. When and how Dynamic programming Approach is applicable?
- **4.** Explain min-max algorithm with example?


SECTION-B $(4 \times 10 = 40)$

- **5.** What is binary search? Write an algorithm to find the k-th smallest element in binary search tree. How this is better in comparison to finding k-th smallest element in an array.
- **6.** Explain divide & conquer technique. How can this technique be used to find the minimum & maximum element out of n given elements? Write the divide and conquer based algorithm for this problem. Also, find its time complexity.
- **7.** Explain the algorithm for quick sort. Apply it to the following list:

(40, 80, 35, 90, 45, 50, 70) Analyze it's average and worst case time complexity.

8. Explain performance analysis of algorithm in terms of best, worst and average case?

9. Using Dijkstra's algorithm find the shortest path

10. Discuss the Backtracking problem solving approach with the help of an N-Queens problem. Write the algorithm of N-Queens problem.

or

How can we solve the 0/1 knapsack problem using branch and bound. Use the appropriate example to explain the concept.

UNIVERSITY WITH A PURPOSE

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES

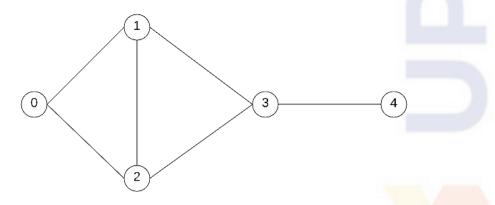
End Semester Examination, December 2017

Program: Btech CS+L Semester – 5th

Subject (Course): Design and Analysis of Algorithm

Course Code : CSEG320

Max. Marks : 100


Duration : 3 Hrs

No. of page/s: 3

Instructions: Attempt all questions from **Section-A** (each question carrying *5 marks*); **Section-B** (each question carrying *10 marks*) and **Section-C** (each question carrying *20 marks*).

SECTION-A $(4 \times 5 = 20)$

- 1. What is algorithm? Explain performance analysis of algorithm with O, Ω and Θ notations?
- **2.** Explain graph-coloring problem algorithm and find the least number of colors to paint the graph:

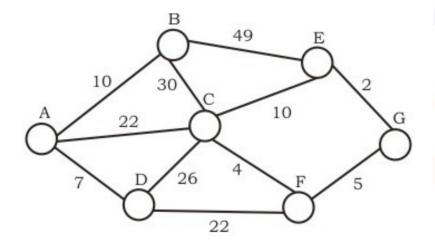
- 3. Explain min-max algorithm with example?
- **4.** What is tree vertex splitting problem?

SECTION-B $(4 \times 10 = 40)$

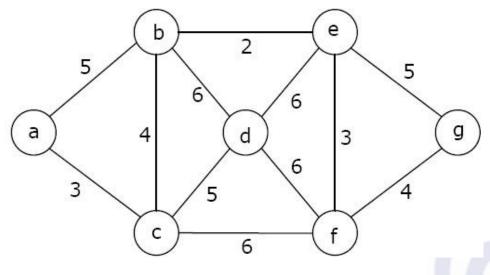
5. Explain Strassen matrix multiplication method. How Strassen matrix multiplication method outperforms the classical one.

- **6.** Explain the algorithm for quick sort. Apply it to the following list:
- A = <39, 56, 98, 40, 80, 35, 90, 43, 11, 25, 45, 50, 70> Analyze its average and worst-case time complexity.
- 7. What is binary search? Write an algorithm to find the k-th smallest element in binary search tree. How this is better in comparison to finding k-th smallest element in an array.
- **8.** Explain divide & conquer technique. How can this technique be used to find the minimum & maximum element out of n given elements? Write the divide and conquer based algorithm for this problem. Also, find its time complexity.

Or


Explain merge sort with example?

SECTION-C
$$(2 \times 20 = 40)$$


9. How can we solve the 0/1 knapsack problem using branch and bound. Solve the following problem, where capacity is W=5.

Item i	1	2	3	4
Value val	200	20	60	40
Weight wt	3	2	4	1

10. Find the minimum spanning tree of given graph through prims algorithm:

Find the minimum spanning tree of given graph through kruskal's algorithm:

