Name: Enrolment No:						
	ination, December 2017					
Course: MATH 7001- Applied M Programme: M. Tech. (Petroleum Engineering)	athematics in Petroleum Engineering -I					
Semester: I (ODD-2017-18) Time: 03 hrs.	M	Ma				
Time: 05 nrs.	111	ax. Ivial	rks:100			
Instructions:		• D (1			
Attempt all questions from Section A (each carrying carrying 8 marks); attempt all questions from Section		10n B (each			
Sec	ction A					
	all questions)					
1. If $y = x^3 + x^2 - 2x + 1$, calculate values of difference table.	y for $x = 0, 1, 2, 5, 4, 5$ and form the	[4]	CO1			
4			- (
2. Evaluate 0 by Simpson's 1/3 rule using	Evaluate $\int_{0}^{e^{x} dx}$, by Simpson's 1/3 rule, using data $e = 2.72, e^{2} = 7.39, e^{3} = 20.09,$					
$e^4 = 54.60$	guata	=20.09, [4] C				
Find the positive root of the equation $x - \cos x$	c = 0 using bisection method.	[4]	CO3			
3.						
[1	2 -1					
$4. \qquad \qquad A = 1$	$A = \begin{bmatrix} 1 & 2 & -1 \\ 1 & 1 & 1 \\ 1 & 3 & -1 \end{bmatrix}$ using the Gerschgorin bounds.					
Estimate the eigenvalues of the matrix	3 -1] using the Gerschgorin bounds.	[4] CO4				
Use Picard method to solve the equation $y' = x$						
5. $\begin{bmatrix} 0 \text{ set read method to solve the equation } \\ \text{when } x = 0 \end{bmatrix}$.	subject to the condition ?	[4] CO5				
	TION D					
	TION B and Q10 has internal choice)					
The following table gives the population of a t			. i			
censuses. Estimate the population in 1913 by						
6. Year: 1911 1921 1931 194		[8] CO1				
Population: 12 15 20 27						
(in thousands)						
7. Find the root of the equation $x^6 - x^4 - x^3 - 1 =$	⁰ which lies in the interval (1.4, 1.5)	[8]	CO3			
correct to four decimal places using Regula- F						

8.	Solve the equation $\frac{dy}{dx} = x + y$ with initial condition $y(0) = 1$ by Runge – Kutta method, from $x = 0$ to $x = 0.1$ with $h = 0.1$.	[8]	CO5			
9.	Solve $u_{xx} + u_{yy} = 0$ in $0 \le x \le 4, 0 \le y \le 4$, given that $u(0, y) = 0, u(4, y) = 8 + 2y$, $u(x, 0) = \frac{x^2}{2}$, and $u(x, 4) = x^2$. Take $h = k = 1$ and obtain the result correct to one decimal place.					
10.	Find the solution of $\frac{dy}{dx} = \frac{y - x}{y + x}$, $y(0) = 1$ Euler's method. Take $h = 0.1$. Use Taylor's series method to solve $\frac{dy}{dx} = x + y$; $y(1) = 0$ numerically upto $x = 1.2$ with $h = 0.1$. Compare the final result with the value of explicit solution.	[8]	C05			
	SECTION C (Q11 is compulsory and Q12A, Q12B have internal choice)		-			
11.A	Using Jacobi method find all the eigenvalues and the corresponding eigenvectors of the matrix $A = \begin{bmatrix} 1 & \sqrt{2} & 2 \\ \sqrt{2} & 3 & \sqrt{2} \\ 2 & \sqrt{2} & 1 \end{bmatrix}$	[10]	C04			
11.B	The following are the measurements t made on a curve recorded by the oscillograph representing a change of current i due to a change in the conditions of an electric current. t: 1.2 2.0 2.5 3.0 i: 1.36 0.58 0.34 0.20 Using Lagrange's formula, find i at $t = 1.6$.	[10]	CO1			
12.A	A reservoir discharging water through sluices at a depth h below the water surface has a surface area A for various values of h as given below:	[10]	CO2			

	h(in meters).	10	11	1	12	13	14		
	A (in sq. meters	s): 950	1(070	200	1350	1530		
	If t denotes tim Estimate the tim	e in minute ne taken for	s, the rate of the water le	fall of the survel to fall fror	face is given n 14 to 10 m	$\frac{dh}{dt} = -\frac{d}{dt}$ above the sl	$\frac{18}{A}\sqrt{h}$. uices.		
				OR					
	The table below degrees centigra of observation.	-				-			
	t : 1		3	5	7	9			
	θ_{1} 8	35.3	74.5	67.0	60.5	54.	3		
	Find the approx	imate rate o	of cooling at	t = 3 and 3.5					
	Solve the heat c	onduction 1	problem $\frac{\partial u}{\partial t}$	$=\frac{\partial^2 u}{\partial x^2}$ subject	to condition	$\int_{S} u(x,0) = si$	nπx,		2
	$0 \le x \le 1$, and								
				g Schiller ind		alik – INICOIS	011		
12.B	method, taking	<i>n</i> =175, <i>k</i>	-1/ 50	OD				[10]	CO6
				OR					
	Solve the equation $y = 0$ $x = 3$ $y = 1$			(10) over the undary and me			=0,		