

8.	Solve the equation $\frac{d y}{d x}=x+y$ with initial condition $y(0)=1$ by Runge - Kutta method, from $x=0$ to $x=0.1$ with $h=0.1$.	[8]	CO5
9.	Solve ${ }^{u_{x x}+u_{y y}}=0$ in $0 \leq x \leq 4,0 \leq y \leq 4$, given that $u(0, y)=0, u(4, y)=8+2 y$, $u(x, 0)=\frac{x^{2}}{2}$, and $u(x, 4)=x^{2}$. Take $h=k=1$ and obtain the result correct to one decimal place.	[8]	CO6
10.	Find the solution of $\frac{d y}{d x}=\frac{y-x}{y+x}, y(0)=1$. Find y approximately for $x=0.6$ by Euler's method. Take $h=0.1$. OR Use Taylor's series method to solve $\frac{d y}{d x}=x+y ; y(1)=0$ numerically upto $x=1.2$ with $h=0.1$. Compare the final result with the value of explicit solution.	[8]	CO5
	SECTION C (Q11 is compulsory and Q12A, Q12B have internal choice)		
11.A	Using Jacobi method find all the eigenvalues and the corresponding eigenvectors of the matrix $A=\left[\begin{array}{ccc} 1 & \sqrt{2} & 2 \\ \sqrt{2} & 3 & \sqrt{2} \\ 2 & \sqrt{2} & 1 \end{array}\right]$	[10]	CO4
11.B	The following are the measurements t made on a curve recorded by the oscillograph representing a change of current ${ }^{i}$ due to a change in the conditions of an electric current. Using Lagrange's formula, find i at $t=1.6$.	[10]	CO1
12.A	A reservoir discharging water through sluices at a depth h below the water surface has a surface area A for various values of h as given below:	[10]	CO2

	h (in meters): 10 11 12 13 14 A (in sq. meters): 950 1070 1200 1350 1530 If t denotes time in minutes, the rate of fall of the surface is given by Estimate the time taken for the water level to fall from 14 to 10 m above the sluices. The table below gives the results of an observation; θ is the observed temperature in degrees centigrade of a vessel of cooling water; t is the in minutes from the beginning of observation. Find the approximate rate of cooling at $t=3$ and 3.5.		
12.B	Solve the heat conduction problem $\frac{\partial u}{\partial t}=\frac{\partial^{2} u}{\partial x^{2}}$ subject to conditions $u(x, 0)=\sin \pi x$, $0 \leq x \leq 1$, and $u(0, t)=u(1, t)=0$, using Schmidt method and Crank - Nicolson method, taking $h=1 / 3, k=1 / 36$. OR Solve the equation $\nabla^{2} u=-10\left(x^{2}+y^{2}+10\right)$ over the square mesh with sides $x=0$, $y=0, x=3, y=3$ with $u=0$ on the boundary and mesh length $=1$.	[10]	CO6

