

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES

End Semester Examination, December 2017

Program: B.Tech ASE Semester – V

Subject (Course): Aircraft Materials

Course Code: ASEG 336

Max. Marks : 100

Duration : 3 Hrs

No. of pages: 2

Instructions:

1. The Question paper has three sections: Section A, B and C.

2. Section B and C have internal choices.

	Section A (Attempt ALL questions)		
1.	Classify aluminum alloys.	[5]	CO3
2.	Describe the importance of high-temperature nickel alloys in flight structures.	[5]	CO3
3.	Identify the commonly used fibers for polymer and metal matrix composites.	[5]	CO1
4.	Define consumable and non-consumable electrodes for arc welding.	[5]	CO1
	Section B (Attempt ALL questions)		•
5.	Describe pultrusion process for the production of fiber reinforced plastic (FRP) composites.	[10]	CO4
6.	Describe the selection criteria of aircraft materials based on the engineering considerations.	[10]	CO1
7.	Explain general methods of fabrication of aircraft and aero engine parts.	[10]	CO4

8.	Explain the heat treatment process of 1025-mild-carbon steel and its effect on material properties.	[10]	CO4	
	OR			
	Explain the Intergranular corrosion and its effect on steel alloys.			
	Section C (Attempt ALL questions)			
9.	Categorize resistance welding for alloys and describe resistance spot welding and resistance seam welding in detail.	[20]	CO3	
10.	Explain Inconel, Monal and K–Monal alloys, their properties and applications to aerospace vehicles.	[20]	CO2	
	OR			
	Classify titanium and its alloys. Explain, extraction, melting, welding and properties of titanium alloys.			

Roll No:	
-----------------	--

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES

End Semester Examination, December 2017

Program: B.Tech ASE Semester – V

Subject (Course): Aircraft Materials

Course Code: ASEG 336

Max. Marks : 100

Duration : 3 Hrs

No. of pages: 2

Instructions:

1. The Question paper has three sections: Section A, B and C.

2. Section B and C have internal choices.

Section A (Attempt ALL questions)			
1.	Identify the alloys useful for propeller blades, propeller hubs and cowl ring.	[5]	CO3
2.	Define carbon fiber reinforced composites with examples.	[5]	CO1
3.	Identify the potential applications of titanium alloys.	[5]	CO3
4.	Describe the selection criteria of aircraft materials based on economic points.	[5]	CO1
	Section B (Attempt ALL questions)		
5.	Explain rivets, jigs and fixtures for aircrafts with examples.	[10]	CO4
6.	Explain electrochemical grinding (ECG) and laser-beam machining.	[10]	CO4
7.	Describe plasma arc welding, its advantages and disadvantages.	[10]	CO3

8.	Differentiate Inconel and K–Monal alloys in terms of their properties and applications to aerospace vehicles. OR	[10]	CO2
	Explain the titanium alloys and their basic principle of heat treatment.		
	Section C (Attempt ALL questions)		
9.	Explain alloy steels and the effect of alloying elements on the properties of these alloys.	[20]	CO1
10.	Describe, why pitting corrosion of aluminum alloys is a serious problem and also explain heat treatment methods of these alloys.	[20]	CO2
	OR		
	Describe magnesium alloys, their properties, applications to aerospace vehicles, causes of corrosion and corrosion control methods.		