[4]

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES

End Semester Examination, December 2017

Program: B. Tech. GIE

Semester VII

Subject (Course): Spatial Data Analysis and Modeling	Max. Marks: 100
Course Code : GIEG 413	Duration: 3 Hrs
No. of page/s: 2	

Section –A

Answer all Questions

- 1. Explain the concept of linguistic variable –hedges and list operators applied to the fuzzy sets representing linguistic terms [4]
- 2. Give the diagram of conceptual framework of the Markov–cellular automata (MCA) model [4]
- 3. Write the concept of binary weight method in spatial weight matrix analysis with empirical relationship [4]
- Write short note with illustration epsilon band parameter used in spatial data quality assessment
 [4]
- 5. Give an brief account of complex adaptive system with examples

<u>Section –B</u>

An	swer all Questions (4x	(10 = 40)
6.	Discuss various measurements analysis to be performed using vector and raster data	a [10]
7.	Write short notes on structure of Agent based model and Agent environments	[5+5]

or

Give an detail account of Moran's I index of spatial autocorrelation

(5X4 = 20)

- 8. Write notes on network allocation and trace methods of network spatial analysis. [5+5]
- 9. Write the concept and procedure of simplified method of fuzzy reasoning of geo-spatial analysis [10]

<u>Section –C</u>

- 10. Discuss in details (with illustrations and mathematical relationship) k-Order Neighbors Weight method of spatial weight [20]
 - or

Discuss in details various issues of geo-spatial analysis

Answer all Questions

11. Write in details the method of weight of evidence method of geo-spatial analysis (give major mathematical relationships) [20]

(2X20 = 40)

[20]