Roll No: -----

# UNIVERSITY OF PETROLEUM AND ENERGY STUDIES



End Semester Examination – December, 2017

| Program/course: B.Tech/Mechatronics  | Semester –7 <sup>th</sup> |        |
|--------------------------------------|---------------------------|--------|
| Subject: Process Control Description | Max. Marks                | : 100  |
| Code : MEEL431                       | Duration                  | : 3Hrs |
| No. of page/s:2                      |                           |        |

# Section A Attempt all the questions. Each question carries 5 Marks.

**1.** Consider a household heating system with on-off control. Normally there is a dead band of  $2^{\circ}F$ ;that is, the temperature must drop to  $1^{\circ}F$  below the set point before the heater kicks on, and it must go  $1^{\circ}F$  above the set point before the heater kicks off. Clearly the thermostat/heater has periodic behavior with periods where the heater is on, followed by periods where it is off. Discuss the effect of the dead band on this periodic behavior . Sketch the expected heater (on-off) and temperature profiles as the dead band is changed.

2. Consider a first order open loop unstable process that has the following transfer function  $g_p(s) = k_p/(-\Gamma_u s + 1)$ 

Find the range of values of parameters for a PI controller that stabilize this process.

3. Calculate the offset to a step set point change due to P-only control, for the following process;  $g_p(s) = 1/s(2s+1)$ 

4. A process has the following transfer function ;

$$g_p(s) = 2(-3s+1)/(5s+1)$$

Using a P-only controller, find the range of the controller gain that will yield a stable closed -loop system.

## Section B

# Attempt all the questions. Each question carries 10 Marks.

5. What are the possible problem with offset using proportional controllers.

- 6. Derive the expression for the direct synthesis for a first -order process.
- 7. Derive the expression of the controller for a first order process with a PI controller.
- 8. Develop the control block diagram including a load disturbance.

OR

Explain open loop unstable systems.

#### Section C

### Attempt all the questions. Each question carries 20 Marks.

9. Consider the following first-order process;

$$g_p(s) = 1/s(2s+1)$$

If the desired closed-loop response to a set point change in second order with the following form,  $g_{CL}(s) = \alpha s + 1/(\gamma s + 1)^2$ 

Find the feedback controller required , where  $\alpha$  and  $\gamma$  are adjustable tuning parameters. What type of controller is this. If the controller is PID form, find each of the tuning parameter.

10. Consider a first -order process with a desired closed loop response that is second order. Use the direct synthesis procedure with the following specified closed loop transfer function (which is critically damped)

$$g_{CL}(s) = 1/(\gamma s + 1)^2$$

to derive the controller.

OR

Derive the expression for the PID controller. Explain any one method of PID tuning.