

UNIVERSITY OF PETROLEUM & ENERGY STUDIES DEHRADUN

END Semester Examination – December, 2017

Program/course: B.TECH- FIRE SAFETY ENGG.

Subject: ELEMENTS OF MACHINE DRAWING

Code: ADEG226

Semester – III

Max. Marks: 100

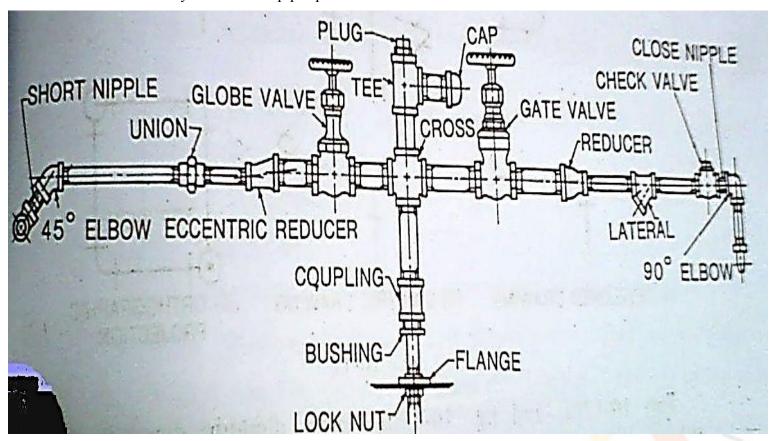
Duration: 3 Hrs

No. of page/s: 3

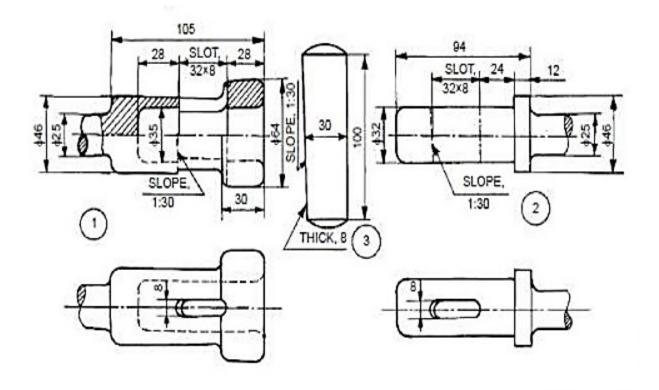
$\underline{SECTION A} \qquad (4X5=\underline{20 Marks})$

- 1. Sketch the difference between single lead and double lead threads.
- 2. Draw the symbol of representation of Machining and grinding surface finish.
- 3. Differentiate UNI and BI lateral dimensioning system.
- 4. Sketch the terms related to THREAD structure.

SECTION B (4X10=40 Marks)


- 5. Draw neat sketches detail the types of screws.
 - a. Round or cap headed
 - b. Cylindrical or cheese headed
 - c. Socket headed
 - d. Countersunk headed
- 6. Draw the position of LEWIS and CURVED foundation bolts.
- 7. Draw neat sketches detail the types of thread
 - a. BA thread
 - b. BSW thread
 - c. ACME thread
 - d. Buttress thread
- 8. On a hole and shaft assembly, the dimensions are as given below Hole = 60H9; Shaft = 60h6 Find: i. Tolerance of shaft ii. Tolerance on hole iii. Minimum Clearance iv. Maximum Clearance v. Type of Fit obtained vi. Sketch the assembly

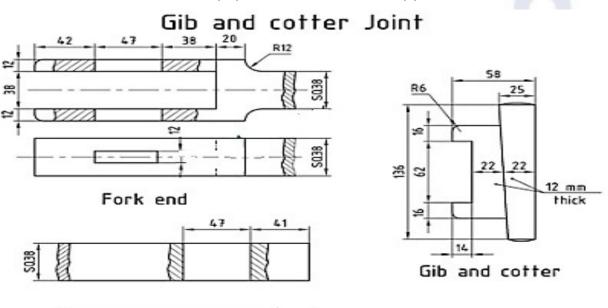
On a hole and shaft assembly, the dimensions are as given below Hole = 80H7; Shaft = 80u6 Find: i. Tolerance of shaft ii. Tolerance on hole iii. Minimum Clearance iv. Maximum Clearance v. Type of Fit obtained vi. Sketch the assembly


SECTION B(2X20=40)

Note: Answer any two Questions

9. Convert the orthographic layout given in figure to single line representation using standard symbols for the pipe specials

- 10. Draw the views of the basic assembly of Spigot cotter joint.
 - a. Sectional front view(15)
- b. Side view(5)


OR

Draw the views of the basic assembly of Gibb cotter joint.

a. Sectional front view(15)

Rod end

b.Side view(5)

12

CLASSES OF FITS (Clearance fits)

Dimensions are in millimeters.

		Loose Running			Fr	Free Running			Close Running			Sliding			Locational Clearance		
Basic Size		Hole H11	Shaft cl1	Fit	Hole H9	Shaft d9	Fit	Hole H8	Shaft 17	Fit	Hole H7	Shaft g6	Fit	Hole H7	Shaft h6	Fit	
40	Max Min	40.160 40.000	39.880 39.720	0.440 0.120	40.062 40.000	39.920 39.858	0.204 0.080	40.039 40.000	39.975 39.950	0.089 0.025	40.025 40.000	39.991 39.975	0.050	40.025 40.000	40.000 39.984	0.041	
50	Max Min	50.160 50.000	49.870 49.710	0.450 0.130	50.062 50.000	49.920 49.858	0.204 0.080	50.039 50.000	49.975 49.950	0.089 0.025	50.025 50.000	49.991 49.975	0.050	50.025 50.000	50.000 49.984	0.041	
60	Max Min	60.190 60.000	59.860 59.670	0.520 0.140	60.074 60.000	59.900 59.826	0.248 0.100	60.046 60.000	59.970 59.940	0.106 0.030	60.030 60.000	59.990 59.971	0.059	60.030	60.000 59.981	0.049	
80	Max Min	80.190 80.000	79.950 79.660	0.530 0.150	80.074 80.000	79.900 79.826	0.248 0.100	80.046 80.000	79.970 79.940	0.106 0.030	80.030 80.000	79.990 79.971	0.059	80.030 80.000	80.000 79.981	0.049	
100	Max Min	100.220 100.000	99.830 99.610	0.610 0.170	100.087 100.000	99.880 99.793	0.294 0.120	100.054 100.000	99.964 99.929	0.125 0.036	100.035 100.000	99.988 99.966	0.069 0.012	100.035	100.000 99.978	0.057	

CLASSES OF FITS (Transition & Interference Fits)

Dimensions are in millimeters.

Basic Size		Locational Transn.			Loc	ational T	ansn.	Locational Interf.			Medium Drive			Force		
		Hole H7	Shaft k6	Fit	Hole H7	Shaft n6	Fit	Hole H7	Shaft p6	Fit	Hole H7	Shaft s6	Fit	Hole H7	Shaft u6	Fit
40	Max Min	40.025 40.000	40.018 40.002	0.023 0.018	40.025 40.000	40.033 40.017	0.08 -0.033	40.025 40.000	40.042 40.026	-0.001 -0.042	40.025 40.000	40.059 40.043	-0.018 -0.059	40.025 40.000	40.076 40.060	-0.035 -0.076
50	Max Min	50.025 50.000	50.018 50.002	0.023 -0.018	50.025 50.000	50.033 50.017	0.008 -0.033	50.025 50.000	50.042 50.026	-0.001 -0.042	50.025 50.000	50.059 50.043	-0.018 -0.059	50.025 50.000	50.086 50.070	-0.045 -0.086
60	Max Min	60.030 60.000	60.021 60.002	0.028 -0.021	60.030 60.000	60.039 60.020	0.010 -0.039	60.030 60.000	60.051 60.032	-0.002 -0.051	60.030 60.000	60.072 60.053	-0.023 -0.072	60.030 60.000	60.106 60.087	100000
80	Max Min	80.030 80.000	80.021 80.002	0.028 -0.021	80.030 80.000	80.039 80.020	0.010 -0.039	80.030 80.000	80.051 80.032	-0.002 -0.051	80.030 80.000	80.078 80.059	-0.029 -0.078	80.030 80.000	80.121 80.102	-0.072 -0.121
100	Max Min	100.035 100.000		0.032 -0.025	100.035 100.000	100.045 100.023	0.012 -0.045	100.035 100.000	100.059 100.037	-0.002 -0.059	100.035 100.000	100.093 100.071	-0.036 -0.093	100.035	100.146 100.124	-0.089 -0.146

UNIVERSITY WITH A PURPOSE